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Abstract

Emerging insights into factors responsible for soil organic matter stabilization and
decomposition are being applied in a variety of contéxtsnew tools are needed to facilitate
the understanding, evaluation and improvement of soil biogeochemical theaonodats at
regional torgloebascalesTo isolate the effects of model structural uncertainty on the global
distribution“ofisoil carbon stocks and turnover times we developed a soil biogecalhtestized
that forcessthree different soil models witmsistent climate and plant productivity inputs. The
models tested here include a fiostler, microbial implicit approach (CASBNP), and two
recently developed microblglexplicit models that can be run at global scales (MIMICS and
CORPSE)When forced with common environmenthivers thesoil models generated similar
estimatesfinitial soil carbon stock&oughly 1400 Pg C globally, D00 cm) buteach model
shows a different functional relationship between mean annual temperature aned infienover
times Subsequentljthe models made divergent projeci@bout the fate of these soil carbon
stocksover the 28 century, with models either gaining or losing over 20 Pg C globally between
1901 and 2010, Single-forcing experiments with changed inputs, temperature, and moisture
suggest that uncertainty associated with frebag processes as well as soil textural effects on
soil carbonsstabilization were larger than direct temperature uncertainties among Fiodéis
the models'generatetistinct projections about the timing and magnitofleseasonal
heterotrophic respiration ratesgainreflectingstructural uncertainties that were related
environmental sensitivities and assumptions about physicochemical stabilization of soil organic

matter. By providing a computationally tractable and numerically consistemvrark to
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evaluate models we aim to better understamzkrtaintiemmong modeland generate insights
about factors regulating turnoverswil organic matter

Introduction

Soils represent the largest terrestdatbon pool on Earth, storing nearly fithmes as much
carbonas vegetatioiJobbagy & Jackson, 2000). e newmillennium thetheoretical
understandingof factors responsibledoil organic matter stabilization haadergone
significant'revisiongSchmidter a/, 2011, Lehrann & Kleber, 2015). Driven by new
measurements that afford high resolution information on the chemical and physicalafaiit
organic matterythese emerging theories posit that microbial access to otherwise decomposable
substrates(asopposed to inherent chemical recalcitrance) governs soil organic matter
stabilization and turnover. Such insights, however, remain poorly represented insgialbal-
models that investigate potential carbon cyetdimate feedbacks (Wiedet al., 2015a, Lucet
al., 2016), espite arexpansion in the number and diversity of soil biogeochemical models
(Manzoni &wParporato, 2009, Siere# a/, 2012).Building the capacity to test emerging
ecologicaltheories in globascale models is critical to informing future research needs, testing
soil biogeechemical theory, refining model features, aratlerahg advancements across
scientific.disCiplines.

Earth system mode(&SMs)are typically applied to project potential carbon cycle —
climate interactionand inform policy decision&Ciais et a/, 2013) butthese modelalso
represent/a scientific tool to test ecological insight at larger spatial and longer temposaliscale
global-scaleapplicationsvhereESMsare used to@nerate numerical projectionsil
biogeochemicamodels showargevariationin estimateof present day soil carbon storage and
widely divergent projections of soil carbogsponse to environmental charfgedd-Brown et
al, 2013, Tiaret a/, 2015). When propagated into future scenatlus createsincertainties in
the magnitude of terrestrial carbon uptékeav et a/, 2013, Aroraet al, 2013, Friedlingsteiet
al, 2014yHoffmaret a/, 2014), angresers limitationsfor assessinghe allowable carbon
emissions that'are compatible with desickchate outcomegloneser a/, 2013, Zhanget al,

2014, Jonegt al, 2016) Troublingly, the soil biogeochemical modelsthese studies share a
common structure, and thus fail to incorporate process uncertainties associated with factors

regulating soil organic matter stabilization in soils. As such, they potentially underestimate the
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true uncertaintyassociated witlsoil carbon responsds environmental perturbations (Bradford
et al, 2016b). Moreover, without applying these emerging soil bidgamical concepts into
global scale modelspportunities to deepen ecological insight by evaluating and refining

theories are ndieingfully realized

Building confidence in terrestrighrbon cycle projections, thereforequires consideration
of the factors-eontrolling the decomposition and formation of soil organic njBtedford et a/,
2016b). This research priority requires balancing demands between formulatingstnactates
that adequately represeahtoretical understanding pfocesses relevant for lotgrm soll
organic matter«dynamics and avoiding undue complé¥itigderet al., 2015a, Lucet al., 2016)
More practicallyjt requires a numerically consistent, computationally efficient simulation
frameworkthat can be used tmmpareand evaluate models at ecosystémglobalscales.
Overlying terrestrial models generate additional variation in the biogeocdlesmid biophysical
state upstreamrof the soil systeamcluding uncertainties in climate, hydrology, and plant
productivity=-andhe potential ecosystem resposisethese facta to perturbationérodd
Brown et 4/.2013; 2014). Although such considerations are critical for assessing the integrated
terrestrial carbon cycle response to environmental change, they present unpéogeshments
to assessing-the soil biogeochemiaahponent of terrestrial models and advancing
understanding,of soil systems. Moreover, as segpond slowly to perturbationslative to
many of these upstream factors, modifications of soil model structures and parameterizations
often extendsspin-up time, which ultimatealjpwsmodel development (Exbrayat a/ 2014,
Koven et al 2015a). To address these challenges, we developed a soil biogeochemical testbed
that facilitates the evaluation of and improvements to the préeesisrepresentation of global-
scale soil biogeochemical models.

We comparehree soil biogeochemical models thatkeaistinct assumptions about the
processes and factors regulating the formation and decomposition of soil orgaeic Dat of
the models reflects traditional ideas about the inherent chemical recalcitrance of soil organic
matter. TThus, it implicitly represents microbial activity and follows a conventional
decomposition cascade regulated by {inster decakinetics(Schimel, 2001, Bradford &

Fierer, 2012). The other two modelsplicitly represent soil microbial activity and physiology,
but male different assumptions about interactions between microbial community actidithe
physicochemical soil environment. Recognizing that multiple sources of uncegeirgsate
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123 spread among models, in this paper we focus on quantifying rstodefuraluncertainty by
124  comparing steady state soil carbon stocks, turnover times, and their resp@rssegransient
125 simulationwith soil biogeochemical models that are forced with identical inputs and

126 environmental conditions.

127
128 Materials and"Methods
129 We created the biogeochemical testbed to conduct ghmlade-soil biogeochemistry

130 simulationsusing a variety of forcing data sets without the computational overhead and

131 infrastructure necessary to run a falhd modelHere we introduce the capabilities of the testbed
132 by using a single realization of climate and plant productivity estimates that serve as common
133 inputs to each of tiee soil organic matter models. In the subsections that follow, we describe
134 each component of the biogeochemical testbed in greater detail, but brieflg thelvworkflow

135 and configuration of the model here (Fig. 1).

136 Daily estimates of GPP, air temperature, soil temperature and soil moisture are needed as
137 inputs to the testbed. The simulations presented here used data from the Ggribamdhi

138 Model (€kM-version 4.5, discussed below). Inputs faheeCarnage-Aimes Stanford

139 Approachterrestrial biospherenodel(CASA-CNP) (reated byPotteret a/, 1993), with

140 modificationsby (Randersorf a/, 1996, Randersoar a/, 1997); and with N and P

141 biogeochemistry as implemented @ang et a/, 2010) Here we use the carbamly version of

142 CASA-CNPvegetation moddb calculatenet primary productivity (NPPandcarbon allocation

143 to differentplant tissues (roots, wood, and leavas)well aghe timing of litterfall. Litterfall

144  inputs are passed onto three different smthemicaimodels that includéhe CASA-CNP

145 modelthatimplicitly represents microbial activitysing a first-order decompositi approachas

146 well as two'recently developexicrobially explicit models that include the dtbbiak

147  Mineralization Carbon Stabilization model (MIMIC8V)iederet a/, 2014b, Wiedeet a/,

148 2015c) andhe Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment model
149 (CORPSE (Sulmanet a/, 2014). For each model, we ran a spin up simulation to bring soil

150 organic matter pools to steady state and then conducted a transient simulat@dingrehanges

151 inclimate and NPP over the historical period (1901-2010) to compare the stocks and changes of
152 soil C pools simulat by each soil modeBelow we summarize thaata inputs, CASACNP

153 vegetation model, the three soil carbon models applied in the testbed, and the testbed
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154  configuration More detailednformation can be found in the online user’s manual and technical
155 documentationthat accompanies thpublically availablenodeltestbed codavailable at

156 github.com/wwieder/biogeochem_testbed 1.0.
157 Data inputs

158 Data inputs for the biogebemical testbed can be modified from a variety of sources, but
159 for this study, dta inputs were generated by @ieM using a satellite phenology scheme forced
160 with the CRU-NCEPclimate reanalysigKoven et a/, 2013, Olesoret a/, 2013)(Fig. 1). This

161 standard gonfiguration of CLM generated globally gridded daily output of gross primary

162 productivity(GPP), air temperature, soil temperature, liquid soil moisture and frozen soill

163 moisture forthe historical period (1901-2010). Solil texture inputs to the testbedeptne

164 weighted means in the top 50 cm of $mim the CLM surface data set (Olesefha/, 2013)

165 The testbedsassigned a single plant functional type (PFT) to each 2° x 2° gridroplited as

166 the mode(from the 1-km International Geosphere—Biosphere Program Data andtlaforma

167 System (IGBP DISCover) data set with\&etation types, including grassy tundra (Loveland

168 al/, 2000;NCAR staff). CASACNP defines biomepecific parameters corresponding to each

169 PFT (TablesSjk-Results presented here use output from the two-degree version of CLM as input
170 to the testbed,although the testbed operates independent of resolution and can even be

171 configuredto run for a single point or field site. Post processing of CLM history fles w

172 required to format input data that could be read into the tes3ipedifically,average soil

173 temperature andduid and frozen soil moisture used by the testbed are depth-weighted means in
174 the rooting zone according to the PFT-specific root depth and root distrift#ible S1) Only

175 liquid soil meisture was considered when computing soil moisture limits on gfornitine

176 vegetation'medel and decompositiorthe CASACNP and CORPSEoil models. CORPSE

177 also requiredinformation dinozen soil moisture to calculate dilled pore space. MIMICS did

178 not consider soil moisture effects on decomposition.

179 CASACNP_vegetaon mode/

180 Thesearbon-only version of the CASBNP terrestrial biosphere model calculated daily
181 net primary production (NPP) and subsequent plant litter inputs to the soil. Dailw&P

182 calculated by subtracting the sum of plant maintenance and growth respiratidhdrQinM-

183 derived GPP. Maintenance respiratiofCASA-CNP was zero for leaves, and calculated as a

This article is protected by copyright. All rights reserved



184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

function of N content (g C g Nd™) for wood and fine roots (determined from fixed biome-
specific C:N ratios, Tabl&1). These respiration rates were zero for air/soil temperatlzes

K and increased exponentially with temperature using a fixed bsp@eific Qo (Sitch et a/,
2003). Growth respiration was a fixed fraction (0.35) of the quantity GPP minus the sum of
maintenance.respiration fluxédhe relative amounts of NPP allocated to leaves, wood, or fine
roots were\fixed biome-specific fractions that depended on leaf phenology(Wesger a/,
2010).

Turnover of live leaves, wood, and fine roots occurred daily at bigeeific agerelated
death rates The leaf turnover rate increased with cold and drought stress, and was modeled
following the approach of (Arora & Boer, 2008)on-woody plant litter was partitioned into
structural and metabolic litter material as a function of the bigpeeific lignin:N ratio of the
plant litter (TableS1). Woody plant litter accumulated in the coarse woody debris (CWD) pool,
which decomposed as a function of temperature and soil moisture for all models adedncl
CO, respiration loss. Metabolic litter, structural litter, and decomposing CWD comprised C
inputs to allsseil carbon models in the testbed.

Soil carbon models

Previous publications document soil models applied in the testbed, but Table 1
summarizes'some of the key similarities and differences among the soil models. Additional
detaik are also available in theser's manual and technical documentation available in the
testbed’s GitHub repository (see acknowledgememts). CASACNP soil carbn model had
two litter poolsy(netabolic andtsuctural) and three soil organic matter pools (fast, slow, and
passive. Livesmicrobial biomass was not explicitly simulated as a driver of decomposition, but
the transfer of C from litter to soil pools or among soil carbon pools producgdeSgration
lossesThe cecomposition of podl (D)) is controlledpools size ;) and pobspecificfirst-order
kinetics(k;).that.are modified by environmental scalars calculated as a function of soll
temperature.and moisture (T afydespectively).

Di=C;k; - f(T)-f(6) eq. 1
Structural andsmetabolic litter pools decomposed into fast and slow pools as enfofiditynin
fraction. The CWD pool decomposed to the fast and slow SOM pools also as a function of the
wood lignin fraction. Transfers of C from the fast and slow poolsddrime passive pool and

were a function of soil texture. The passive pool decomposed without transfers oth@rt
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215 pools. In CASA-CNP the cropland PFTs had no moisture limitation on soil orgariegr mat
216 decomposition and daily turnover rates for the fast, slow, and passive pools wepkedudii
217 1.25, 1.5, and 1.5 respectively. Neither MIMICS nor CORPSE modified decomposition rates for
218 croplands.

219 MIMIES hadtwo litter pools (metabolic and structural), two live microbial biomass
220 pools (copiotrophic and oligotrophic, referred to as r and K, respectively), anddliresganic
221 matter pools(available, chemically protected, and physically protected)wbiady plant litter
222 was partitioned into metabolic and structural litter pools using a slightly diffinection of the
223 lignin:N ratio than the one in the CASBNP modelsee user’'s manualpecomposing CWD
224  carbon was transferred to the structural litter pool. The microbial decdropasii metabolic
225 and structural litter and available SOM pools were caetldly reverse Michaelislenten

226 kinetics and madified by soil temperature:

MIC,
Kes  (T) +MIC,

227 D, #Vmax . (T)-C eq. 2

228 whereD; was-the decomposition of popNMmax(7) was the temperatwgensitive maximum

229 reaction velocity, K{ 7) was the temperaturgensitive haHsaturation constant specific to the

230 or K'micrebial pool, Gwasthe carbon pool, and Mg was ther or K microbial pool.

231 Decomposition fluxes also controlled the growth of microbial biomass pools andzad C

232 respirationlosses that were determined by fixed (fepecific) micobial growth efficiencies

233  Microbial turnover, which was proportional to annual NPP, transferred C to phygimotected,
234 chemicallysprotected, and available SOM pools, without @3piration loss. Desorption of the
235 physically pretected pool followed firstrder kinetics and wadescribed as a function of soil

236 clay content, without C@loss. Oxidation of the chemically protected SOM, whiamsferredC

237 to the available pool, followed reverse MagtisMenten kinetics and @ therefore dependent

238 on the size of standing microbial biomass pools, but as none of the carbon is &sbintita

239 microbial biomass there are no associated [0€ses.

240 CORPSE had separate surface litter layer pools and g@4, each with three

241 chemicallydefined carbon species (labile, chemically resistant, and dead microbes) and a live
242  microbial biomass pool. The surface litter pools were all considered unprotected while the SOM
243 pools had unprotected and protected coyates. Metabolic and structural leaf litter was

244 transferred to the labile and chemically resistant surface litter pools, respectively, without CO
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respiration losses. Similarly, metabolic and structural root litter was transferred to labile and
chemicallyresistant unprotected soil carbon pools, respectively. Root exudates, calculated as a
fixed 2% of NPP, also contributed to the labile unprotected soil pool. We reducedteoatfiut

by the amount of root exudate C added so total C inputs to CORPSE were identical to those of
the other soil.models. Carbon from the decomposing CWD pool was transferred to the
chemically,resistant litter pool. No carbon was transferred bettheesurface litteandsoil

layers. The'microbial decomposition of unprotectdullég chemically resistant, and dead

microbe litterand SOM pools, GAluxes, and the growth of microbial biomass were controlled

by the existing microbial biomass and modified by soil temperature and moisture:

D; = Vel (1) (52 )3(1 S )2'5 C— eq. 3

Osat Osat L MIC+Kes+Y; C;

where 0 wasvelumetricliquid soil water content and 0, Wassaturation soil water content.
Microbial growth efficiencies used fixed, pogpecific fractions, with labile C having a high
associated growth efficiency and chemically resistant C having a low efficieimeynodel
assumed that the microbial biomass limitation on decomposition vedsdébd the microbial
biomass as a fraction of total carbon. As a result, decomposition rate resporddy to total
carbon contents(similar to a firstrder model) but was accelerated by greater labile C inputs
(which stimulatel microbial biomass groth) and suppressed when labile C was depleted
relative to chemically resistant ®licrobial turnover, which was proportional to a fixed turnover
rate, transferred C thie unprotected dead microbes pool, with,@&spiration loss. Carbon was
transferred atixed, first-order rates from the unprotected soil pools to their protected
counterparts. These rates varied with clay content and chemical species (with dead microbes
having a relatively higher protection rate), and occurred withoutr€&piration losse
Protected-C.was transferred back to unprotected pools at a different figedyder rate.
Testbed configuration, simulations, & analyses

The simulations for each SOM model were carried out in three stéaization, spinup,
and transiensimulations, which are described beloWe initialized CASA-CNP vegetation
pools by.running the testbed with 1901 forcings for 100 yddunis initializationcreatel more
stable vegetation pools and litter inputs for subsequent simulatibestdie of th€EASA-CNP
vegetation pools (but not SOM pools) from timialization simulationwereused to initialize

spinup runs for all SOM models.
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275 Soil carbon poolsverespun up by cycling over 1901-1920 forcing#il organic matter

276 pools reached equilibrium.”ASOMmodel was considered to be in equilibrium whérhree of
277 the following criteria were mdietween 2Qrear cyclesgloballitter plus soilcarbon stocks

278 changed less than 0.8 total litter plus soilcarbon in > 986 of grid cellschangedessthan 1
279 g C i andtetal litter plus soikcarbon in > 98% of grid cells changedsthan 0.1%. Spinup
280 times varied between modeBASA-CNP required 10,00@ears of an accelerated spinup

281 followed by™20;000 years of normal spinup in order to reach equilibffomthe accelerated
282 spinup, the'decompositioate of the passiveool wasincreasedenfold. Following accelerated
283 spinup, the passivearbon stockvas multiplied tenfold before starting thermal spinup phase.
284 MIMICS organic matter pools requird@,000years to reach equilibriumwith the physically
285 protected pootequiringthe longest spinup tim&ORPSEorganic mattepools required 50,000
286 yearsto reach eguilibriumprimarily due to slow continuing accumulation of chemically

287 resistant litter in high latitudes all models, these spinup timae still prohibitively londgor

288 doing many repeated simulationsparameter estimatio@nd highight a research priority that
289 must be addressé€duo ef a/, 2016) in this and other work.

290 We conducted full transient simulatiofrem 1901 — 2010. &+ each of the three soil models
291 currently‘implemented in the testbed, we compared: 1) initial conditions fojawodel spinup;
292 2) changesrirsoil carbon pools over thieansient simulationand 3) seasonal patterns of

293 heterotrophic respirationtdere we focus on total soil carbon stothat are simulated by each
294 model, whichwere calculated as the sum of all litter, microbial biomass, andathibn pools.
295 Beyondinitial"earbon stocks, estimates of steatigtesoil carbon turnover times provide a

296 metric to evaluate the emergent relationship between climate the mean residence time of various
297 C stocks (Koveret al, 2017).Recognizing that tuwver times vary with model structure in

298 transient simulationRasmussee a/, 2016) turnover times were calculated by dividing initial
299 soil carbon,stocks by heterotrophic respiration fluxes for each model, masking out pibints w
300 initial productivity < 100 g C My™. Simulated results wermpared to an observationally
301 derived funetional relationship with mean annual temperature from Koven and (@biEnsthat
302 was calculatetby dividing soil carbon stocks from tiarmonized World Soils Database

303 (HWSD)(FAO et al, 2012) and Northern Circumpolar Soil Carbon Database (Hugeliab
304 2013)by MODIS NPP estimatgZhaoet a/, 2005) Although this turnover time vs. climate
305 relationship is derived from present day estimates of plant productivityontera that these
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inferred turnover times represent important gledzle patterns that models should be expected
to replicate.

Several additional experiments were conducted that demonstrate the uthigytestbed in
rapidly assessing and understanding variation among models. Initial simutatggestethat
soil texture petentially mediated soil C responses among models. Thus, wedepeapinup
and fully transient simulations with globally consistent soil texture (20% clay,sfiQ%nd 40%
sand). This'global loam experiment only changed theesdilre effects on particular transfer
coefficientsand turnover times that were simulated by each soil biogeoehamitel and did
not concurrently modify the soil hydraulic cotidns Second,d decompose the effects of
particular fereings on soil carbon stocks we conducted three isolated-forcingrequisrwhere
plant productivity, soil temperature, and soil moisture individually changed overtreegtury,
but the remaining input variables were held constant (cycling over 1901-1920 valuéiseas i
spinup).We _compared the time series of soil carbon changes from isolated forcing experiments
to the fully:transient 2D century simulations
Results
Initial Conditions

When forced wittCRU-NCEPclimate simulatedglobalmean annual soil temperatures
were 15.6€"andmeanliquid soil moisture was 42.1% of saation (Fig.S1a, b, averaged over
theinitialization period, 1901-193). GPP estimates from CLM4.5¢ptaled117+ 1.1Pg C y*
(meant 1 g).and hitial NPP estimates frolBASA-CNPaveragedi8+ 0.8Pg C y* (Fig. Sa).
With theseinputs, the biogeochemical testbeshgmtedotal carbon stocks (includirter, soll
organic matteand microbial biomass) totalirigd6d, 1420, and 1410 Pg carbon €@ASA-CNP,
MIMICS, andCORPSE respectively (Fig2a-¢ Fig. S3).For comparisonsoil C estimatefrom
the HWSDtotaled 1260 Pg C globally (Fig. 2d; 0-100 cm depdb regriddetby (Wiedereft a/,
2014a) Our-aimrhere is not evaluate the spatial distributiosodfcarbon stocks simulated by
any of thesmodels, although the testbed offers opportunities for parameter estimatngia
point andsglobal simulations (e.g., Hararefka/ 2015) We note, however, thdiMICS was
calibrated against the HWSD (Wiedetra/, 2015c) whereas CASACNP and CORPSE were
not similarly calibratedwWe alsorecognizethat global stocks of ‘litter’ C are not clearly defined
in globally gridded soil carbon estimates, and that the HWSD likely underestimgtidatitude
soil C stockqTodd-Brown et al. 2013 hus, we also present permafrost soil C estimates from
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the NCSCD(0-100 cm depth), which shows larger soil carbon stocks in permafrost regions
(Figs. 3, S3)The three soimodels implemented in the testbed adequately represgiotaal

soil carbon stocks, falling within benchmark ranges for global soil carbon stocks given a
observationallyconsistent field of plant productivifyfodd-Brown et a/, 2014).

Despite. general agreement of global soil C stocks ammugls they exhibited notably
different spatial distributiongicross high latitudesSCASA-CNP and CORPSE generatstkady
statesoil"C'densitieghatwerecloser to observations from tNCSCDandnotably largethan
those simulated bWMIMICS or observed in the WSD (Figs.2, 3, S3. Conversely, elow
latitudes CASA-CNP and CORPSE displayebil carbon densities well below estimates from
MIM ICS andthe HWSD. The global loam experiment indicated that setatéyearbon stocks
simulated in CASACNP and MIMICSshowed a greater sensitivity to soil textw@5(and -178
Pg C, respectively, compared to control simulation) than CORPSE (+ 27 h&eas CASA
CNP showedelatively homogenous reductiomssteadystate soil carbon stocks, MIMICS
showed substantiallarger soil C differences in regionghigh clay content (e.g., much of the
tropics, thessoutheastern US, and SE Asig., S9. All three models generally showed larger
carbon stoekssin tundra regiowgh loam soils, especially CORPSE

Altheugh thesoil models usedimilar temperature functionthey showed large
differencessirpatterns of inferred turnover times and temperature (frigMbdels and
observations showed the longest turnover times in grid cells with colder mean annual
temperaturesObservations suggestthat over the cold domain (mean annual temperature <
0°C) soil carbon turnover hahighertemperatureensitivity (steeper slopeyhereasver the
warm domain‘{mean annual temperature *C)3urnover times had lower temperature
sensitivity (shallow slopeKovener a/, 2017. The CASACNP soil modelsimulatel alog-
linear relationship between temperature tredlogarithm oturnover time, with variation among
individual grid=eells largely attributed to differences in sodisture(Fig. 4a). Inthe cold
domain CASA-CNP matchel the higher temperature sensitivity of soil carbon turnbeger
than the_twamicrobially explicitmodels. In warmer sites, however, CAEAP showeda linear
decrease ifogiturnover timegespecially in mesic and wet systems), thasnot consistent with
observatiorbased estimategThe cluster ofjrid cellswith very low turnover times are
agricultural grid cellsmainly in Indiathat hal high productivity, but very low soil carb@tocks

owning to how agricultural decomposition rates are handled@ASA-CNP).By contrast,
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368 MIMICS failed to represent high temperature sensitivityhe colddomain, but gerthe warm
369 domainMIMICS capturel the lower temperature sensitivity (flat slopé)nferred turnover

370 times although theénterceptmay be too high (Fig. 4b). Finally, CORPSE sbkdwa stronger
371 than observed temperature sensitivity in all céB&p 4c), with longurnover times simulated
372 by CORPSE.in thedd-domainresuting in large carbon stoclka high latitudesThus, despite
373 similarities,in the overall soil C stocks represented by these models we find strong differences in
374 the spatialdistribution and potential temperature sengamong CASA, MIMICS, and

375 CORP% that'mayinfluence projections of soil carbon change over the historical period.
376

377  Transient Response

378 By theend of the transient simulati@eriod,global mean annuaoil temperature

379 increased by 1.9C and mean annuabil moisture(calculated agpercent saturationhcreased
380 by 0.%%, relative to the initial condition@-ig. 5a). Notably, high latitude soils showed the
381 greatest changgegenerally becoming warmer and wet(Erg. S1c-d)with higher wintertime
382 soil temperaturescreasindiquid water availability for longer periods of timBy the start of
383 the 2f' century{GPPincreased by 19 Pg C'\{+16%) meanwhile NPP increas&dPg C y*

384 (+15% Figs=.ta; S2b) and similar iiTagnitude tanensemble o€MIP5 Earth system models
385 (Wiederetal, 2015b) Higher plant productivityncreasedylobal vegetation carbon stocks
386 simulated by CASAZNP by 36Pg G whereas coarse woody debris stocks declined by @@
387 Changes in productivity and climate drove a net accumulation of soil carkiXSA-
388 CNPand MIMICSby the end of theimulation(+18.1 and +24.1 Pg,Cespectively), whereas
389 CORPSHostsoil carbon over the same period (-RgrC;Fig. 5b). Despit receiving identical
390 litter inputs and climate forcing, the three soil models tested here slivammdtically different
391 spatial patterns;of soil carbgains and lossd§ig. 6). Particular changeaa soil carbon stocks
392 largely depenédon the balance of changes in plant productivity and soil conditions, along with
393 differentassumptions made @ach modelFor example, itundra ecosystemmant productivity
394 increasedsby 20-30%vhereasoil temperature warmed by less th&C IFigs.S1, S2). In

395 CASA-CNPand MIMICS this increaseplant productivity overwhelmed soil carbtmsses from
396 the increasetieterotrophic respiratigieading tonet soil carbon accumulationsnainly in the
397 litter pools simulated by both models. By contrast, CORPSE lost large amounts offtsml ica

398 these regionéFig. 6).Soil texturelargely modulated the initial soil carbon stocks simulated by
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each mode(Fig. S4), but had a more muted effect on transient soil C dynamics. In the global
loam experiment, soil carbon accumulation€ ASA-CNP and MIMICS were dampendd17.7
and +19.0Pg C, respectively), whereas CORRS8# slightly moresoil carbon over the same
period (-22.1 Pg CMIMICS assumed that clay rich soils preferentially stabilize microbial
residues inphysically protected soil organic matter pools; thus, in the glabakkperiment

soil carbon.accumulations were approximately 200 g*Gnoughly 20%)essacross the tropics
in MIMICS*(data not shown).

Thetestbed allowed us to parse out gross changes among models from isolatgd forci
experiments, rather than just seeing the net changes over the fully transient simulation. Isolated
forcing experiments showed tHdtMICS had a higher sensitivity to changes in plant
productivity‘and temperature than the other models—accumulating twice the amourst of C a
CORPSE in thaiisolated GPP experiment, and ldswag as much C in the isolatedlso
temperature simulation (Figs. 5c¢,d, SHost of these differencebpwever, took place in mid-
to-low latitudes (< 50N), where MIMICS simulated significantly larger initial carbon stocks
than the othertwo models (Fig. 8).MIMICS, microbial turnover increased with higher plant
productivity(Wieder et a/, 2015c) This servd as adensity dependent control over
decomposition rates (Buchkowsd#t a/, 2017) but it alsancreasedhe inputs of microbial
residues40”soil organic niat pools.

Our transient simulations highligid uncertainties in understanding temperature and
moisture sensitivity in cold regions. Warmer temperatures ultimately drove the high latitude soil
C losses simtilated over the™€entury; but the isolated forcing experiments demonstrated that
CASA-CNP=and MIMICShadstrongerirectsensitivitesto changing temperatures (Figs. 5, 6,
S5). By caontrast, CORFE showed the largest sensitivity to isolated soil moisture forcings
(including,thawing of frozen soil water), and losore than three times the amount of C as the
comparable.CASACNP simulation (Fig. 5e, S5).gdrly all of the simulated C losses cainten
high latitude.ecosystems—where soil moisture changes are mainly conigofiedze/thaw
stateand thethawing of frozen soils allowed the large C stocks built up in frozen conthitions
decomposeThus, actual temperature sensitivity may be a combination of metabolic sensitivities
to temperatureas well as interactions betwemperature and moisture via controls over liquid

water availabilityin soils subject to freezin@Koven et a/, 2015b, Commanet a/, 2017).
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429 To further explore difrences among models we looked at mean annual cycles of

430 heterotrophic respiration frothe testbedKig. 7). By design, at the beginning of the simulations
431 litter inputs equald heterotrophic respiration rates for all models (48.1 P§)C % climatology
432 of annual soil respiratioratesaveraged across latitudinal bantiereforgillustrates differences
433 in the seasonal cycle of carbon fluxes from each mmotle each soil model in the testbeds

434  driven by a.common climate and vegetation glpdifferenceamong the left panels of Figure 7
435 reflectdistinctionsin the seasonal amplitude of terrestrial net ecosystem exchange with the
436 atmosphereAcross midlatitudes in the northern hemisphere CASAIP showed the lowest

437 amplitude in seasonal G@luxes (Fig. 7a). Over this same region, MIMICS showed higher
438 summertime respiration than CASZNP, but both modelsimulated similar wintertime

439 respirationrates (Fig.c). By contrast, CORPSE had very lowd-latitude heterotrophic

440 respiration fluxesn winter, but much larger summertime rategenerating the highest

441 amplitude seasonalcle of all the models (FigeJ. The stronger seasonal cycle shown by

442 CORPSE is consistent with the high transient sensitivity to freeze/thaw state by that model.
443 The<= distinetionsvere amplifiedover time (Fig. 7right panels)showing a global

444  intensificationwof heterotrophiCO, fluxes between the first and last decades of the simulation.
445 By the end.of the transient simulatiannual CQ fluxeswereno longer equal among models,
446 however,assoil carbon losses were greater @ORPSE which simulaedheterotrophic

447 respiration fluxes thawvereroughly 1 Pg C Y higher than CASAENP andMIMICS. By the end
448 of the transient simulations,enalso note gualitative difference in the latitudsasonal

449 responsesof'HR between CORPSE and the other models in the mid- tiatitigthe regions,

450 where CORPSE tends to show respiratory increases earlier in the season and more northerly than
451 the baseline climatotpcal cycle, while the other two models tend to show increases that are
452 more closely aligned in seasonality and latitude with the baseline climatéliogy’b,d,f)

453 To clarify differences among models ¥eeused on fluxes from a single latitudinal band
454  (here 54N).over the last decad# the simulation. Figure iustrates the seasonal cycle of

455  environmental drivers (temperature, soil moisture, and litter inputs), as well as the annual
456 evolution of*heteotrophic respiration fluxes and microbial biomasgresented by each model.
457  Again, CASACNPand MIMICSproducedsimilar wintertime fluxes. With warming in spring
458 (and greater availability of liquid water) heterotrophic respiration rates quickly accelerated in all
459 models, but this occurs soonmeithe yearfor both CASA-CNPand CORPSKEFig. 8). The
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460 annual respiration rates simulated by CAGNP generally trackedoil temperature changes,

461 with maximum fluxes corresponding to periods with the warmest soil tempeyatByscontrast,
462 the maximum repiration rates simulated by thecrobially explicitmodels were somewhat

463 lagged from the, CASACNP fluxes—corresponding to periods when litter inputs and

464 temperature.were also highestoreover, MIMICS and CORPSE both simulated higher

465 maximum heterotrophirespiration ratedeading to a higher amplitude in the seasonal cycle of
466 soil COsfluxes™“Some of this temporal shift in respiration rateslikely relatedto changes in
467 microbial bioemass stocks, which broadly trackieel seasonal cycle of litter inputs.

468

469 Discussion

470 Ourresults suggest the actual uncertainty related to soil carbon projections may be larger
471 than previouslyirealized. Todd-Brown and co-authors (2013, 2014) edpontider range of

472 initial soil carbon stoks and trajectories over the*Xdentury from an ensemble of CMIP5

473 models, but each of these modetssforced with spatiallywarying and highly model-

474  idiosyncratierelimate and productivity estimatBg.using a consistent forcing among models,
475 our resuls better capture the variation in soil carbon stocks and their potential response to
476 environmental change that is caused by different model assumptioich is translated into

477 modelstrueturesand particular modle parameterizations. Indeed, given their common forcing,
478 global similarities in testbed results are not surprising (Ahlsebday, 2012, Friendet a/, 2014).
479 Models in‘the biogeochemical testbed, however, mhosadly sample the theoretical space

480 related to soil"erganic matter decomposition and stabiliz&@\éader et a/, 2015a)This

481 variationin‘'medel form(and parameterizatiomjanslate into differences among models ithe:

482 distribution ofsteady stateoil carbon stockéFigs. 2, 3; functionalrelationship of turnover time
483 with mean annual temperature (F; transient response of soil cartstacks to environmental
484 perturbations (Eigt 5, 6 and seasonalynamics of heterotrophic respiratifffigs 7, 8). We

485 acknowledge that some model sprezlikely explained by differences in calibration

486 approaches;specifically, MIMICS was calibrated against the global pattern of C stocks estimated
487 by HWSD, while CORPSE and CASBNP were not (Fig. 2). Future calibration of all three

488 models against the s benchmark (e.g., Fig. 4) may reduce uncertainty in the transient

489 responses among models (Fig. 5).
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Through the historical period, CASBNPand MIMICS show similar changes in global
soil carbon stocks (+18 and +24 Pg C, respectively), wiiereopposite in sigrirom the soil
carlon changes simulated by CORPSE (-21 Pg C; Fig. 5). When combined with changes to
vegetation C stocks from the CASENP simulations (+36 Pg YJrojected terrestrial carbon
uptake would.fall well short derrestrial carbosink estimated by th&lobal Carbon Project
(62-142 Pg.C between 1959-2010, assuming uncertainty of 0.8 PgHbyghtonet a/, 2012,

Le Quéreeral;2014). Although our simulations lack representation of land use and land cover
changeresultsfrom the testbedemonstratenat in order to capture inferred trends in terrestrial
carbon uptake over the end of thd"2@ntury much less carbon would have to accumulate in
vegetationspools of land models that applied CASAP and MIMICS than would be necessary
in a modelusing CORSE.Here, we focus on understanding feictural uncertaintiesmong
models that broadlselate to differences among models in tmepresentation of

physicochemical stabilization of soil organic mattemperature sensitivitieandmoisture
sensitivitiesNotably, we found thaincertainties regarding the physicochemical stabilization of
soil organiemmatter and freeteaw dynamics were greater than uncertainties related to direct
temperature sensitivities among models.

Physicochemical stallration

Physical limitation of microbial access to otherwise decomposable substrates plays a
critical role in preserving soil organic mat{€onantet a/, 2011, Dungaief a/, 2012, Schimel
& Schaeffer, 2012, Cotrufet a/, 2013, Lehmann & Kleber, 2015). Concurrently¢robial
biomass serveas both the catalyst for soil organic matter decomposition and the source of soll
organic matterformation, through the mineral stabilization of microbial resmhg necromass
(Grandy & Neff, 2008, Liangt a/, 2011, Kallenbacler a/, 2016) While the three models
included in the testbed all represented this process, their implementatibassamptions
differed substantially, reflecting important uncertainties in how to appropriatelysezypneore-
scale physicochemical stabilization mechanisms in glstale modelur global loam
experimentillustrated thateadystatesoil carbon dynamics IBASA-CNP and MIMICS
showed a greater sensitivity $oil texture than CORPS(Eig. S4).While the appropriateness of
soil texture to describe diverse stabilization mechanisms on mineral surfaces and within
aggregates is in itself debatalgMikutta et a/, 2006, Doetterkt a/, 2015) texture stillserves as
a useful proxy for which gridded input data sets are available for géohfd-simulationfBailey
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521 etal2017).We also note that fewf theESMsrepresented in the CMIP5 archive use any

522 information about edaphic properties (texture, minerglogpH) in their soil biogeochemical

523 sub-models.

524 Regional differences in initial soil carbon stocks highlight the need to bedtdvee

525 factors regulating physicochemical stabilization of soil organic matteodels. For example,

526 CASA-CNR and CORPSEimulated lover than observesteadystatesoil carbon densities in

527 warmer‘ecosysten(&igs. 2, 3. This suggestthat the physicochemical stabilization mechanisms
528 implicitly represented in theseodels may not be strong enough to counteract environmental
529 conditions that would otherwise favor rapid decomposition (Fig. 4). By contrast, MIMICS
530 simulated higher soil carb@tocks in warm regions that were more consistent with observation
531 based estimatesSimilarly, variation among models in transient simiolas reflects uncertainty
532 related tahe ultimate fate of new carbon that enters terrestrial ecosydtefirst order models,
533 like CASA-CNP, variation in carbon inputs largely determines the variation in soil carbon

534 changes, reflecting the linear relationship between inputs and turnover tioaesBfbwn ef a/,

535 2014, Koveneta/, 2015a). Accordingly, increased productivity in the transient simulation

536 increased soilscarbon stocks in CASAIP, especially in coldedimates with longer base

537 turnovertimes (FigHce, @&, SH). In the microbially explicit models, increased plant

538 productivity'and litter inputs also build proportionally larger microbial biepmls (Fig. S2c-
539 d). These larger microbial biomass pools samultaneouslhaccelerate thdecomposition of

540 organic matter and build soil carbon stocks. The balance of these factors depends on

541 assumptions‘about the catalytic capacity of larger microbial biomassvsothe potential fate

542  of microbiakresidues.

543 Incteased plant productivity over the™@entury increased the rate at which microbial
544  residues contributed to soil organic matter pddi®/1ICS assumes that finely textured soils

545 have a much.greater capacity to stabilize microbial residues (Waeeér2014b), accounting

546 for the larger.tropical soil C accumulati@fig. 6k S9). In contrastlargermicrobial biomass

547 pools simulated by CORPSEs well as increased root exudation) accelerated the decomposition
548 of unprotected. soil organic matter and litter stocks resulting in smaller increases in C stocks
549 (globally (Fig. 5¢, 6¢). Theapid turnover times simulated by CORPSE in temperate and tropical
550 ecosystems (Figl) suggest thattlle of the new arbon will be retained IRORPSE simulations
551 an interpretatiosupported by results from tieolated GPP simulation (Fig. Bb
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Indeed, losses of soil carbon have been obsentbdncreasing plant productivity in
highdatitude ecosysten($lartley ef a/, 2012).In temperate forestsulti-decadal litter
manipulation studies generally show modest carbon accumulation in organic smhkphut
no change in the carbatocks of mineral soilBowdenet a/, 2014, Lajtheet a/, 2014a, Lajtha
et al, 2014b):This suggests a more nuancethtionship between plant productivity and soil
carbon storage ' may be necessamyriderstand ansimulatelikely terrestrial carbon responses to
changes in“plant productivitfrhe models in the biogeochemical testbed take a step in this
direction, but'eur results highlight the need to refine the representdifiactors affecting
microbial access to otherwise decomposable substrates in soils
Temperaturaensitivities

Unceraintiesin observed soil biogeochemical responsdsitgperaturgresent notable
challengedor projecting terrestrial carbon dynamics in a warming world (Jeneag 2003,
Davidson & _Janssens, 2006, Conana/, 2011). Although theory predictisatwarmer
temperatures should accelerate soil organic matter decompeasitidead to soil carbon losses,
experimentalevidence for these assumptions resmainlea Bradford et a/, 2016b) Recem
syntheses,*"however, demonstrate that experimental warming consistently increases soll
respirationsratefCareyet a/, 2016)and leads to soil carbon losses in sitésn initial soil
carbon stecks were larg€rowtherer a/, 2016).Models in the testbed reflectdiese general
expectations (Fig. 5), but extending the insight provided from these relativelytestmort-
experimental findings tdecadal and centenniascales increases the uncertainty associaiixd
societally relevant carbon cycle projectiokreover,these syntheses cannot decompose the
changes insproductivity vs. turnoviames associated with warminigowever, they do
corroborate field studiesuggesting that warmer summertime temperature may be accelerating
the decomposition of soil organic matter in the Alaskan tundrahemebyturning Arctic
landscapes.into, a source of carbon dioxide to the atmosphere (8¢@fu2009, Commanet
al, 2017). Collectively, these observations highlight the importancepdficng the appropriate
soil carboiemperature sensitivitior understanding potential carbon cyclelimate feedbacks,
especiallyin'carbonrich, high latitude ecosystems.

Differences in base decomposition rates and temperature sensitivities largely describe
differences in steady state and transient responses amoraydesimodels (Tod®rown et a/,
2014), but understanding apparent temperature response functions that emergierobnlly
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explicit models is somewhat more complicatedcomposition rates of organic matter in
MIMICS and CORPSE wereontrolled byreverse Michaelidenten base#inetics (eq2, 3),
and both models appligdmperature functi@to calculatemaximum reaction velocitied/(nax)
with similar temperature sensitivities {§2data not shownMIMICS, howeveralso calculates a
temperature.sensitivialf-saturation constaniKes). This likely dampenethe climate sensitiwt
of soil carbon turnover timg&ermaner a/, 2012) andlecreasdthe apparent ¢ of simulated
reaction‘rate¢Davidson & Janssens, 2008hese factors may expldine shallow slope in the
MIMCS log turnover time- temperature relationships in warmer domains (Fig.Bypontrast,
CORPSE!used a fixdualf-saturation constanappliedan Arrhenius equation to calculate,¥
(resulting in higher temperature sensitivities at lower temperaturesjsanchd thatthe
chemical quality of different substrate pootsferreddifferent temperature sensitivities.
Additionally, CORPSE strongly limited decomposition when soil water was Ijnéigten while
MIMICS did not include an explicit soil moisture dependence. As a result, the chfarrover
times simulated by CORPSE in temperate and tropical ecosysteragery fast, but a strong
moisture limitationto decomposition rates in frozen sal®vethe change in slope of the log
turnover times=with air tempature in Figure 4c.

Model structure also determines variation in the transient responses among models (Jones
et al, 2005yRasmussear a/, 2016). For examplsteady state turnover times simulated by
MIMICS showed the lowest tgmerature sensitivity (Figl), but the model also hate largest
sdl C losses in the isolated soil warming experiment (bdt}. whereas the opposite was true for
CORPSEAt*high latitudes, most soil carbeimulated by MIMICSwasin pools thatvere
vulnerable‘tesmicrobialegradation andhereforesensitive to changes in temperature (Figk.
S&). By contrast, much of the soil carbon simulated by CAMR wasn pools with slower
decomposition rates, thestending the time needed for temperatsensitivities to emerge.
Indeed, previous work indicatésatover decadal times scales MIMI®@&s a faster response to
experimental warmingompared to a first order modbljtover centennial time scales
ultimately leses less carbon (Wiedara/, 2014b).Moreover, local effects like edaphic
properties,‘substrate quality, microbial community composition, soil moisture, and redox
conditions compound uncertainty in assessing the vulnerability of soil carbon stocks to
temperature chang®avidson & Janssens, 2006, Bradferdz/, 2014, Bradfordet a/, 2016a).
Interactions between soil moisture and temperature resulted in more modest @dosses

This article is protected by copyright. All rights reserved



614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

CORPSEHN the isolated soil temperature experiment (Bige; discussed nextArticulating the
true uncertainty associatevith any projection of soil carbon change, therefore, requires a deeper
investigation into the structural assumptions represented in models—whindsekiyond
temperature sensitivity of carbon turnover times.
Moisture sensitivities

At multiple scale®f interestmeasuring and modeling soil water availability rersain
highly uncertailLoescheret a/, 2014, Clarket a/, 2015). Subsequentlyanslating the effects
of the soil*hydrologictate into biogeochemical models also presents enormous challenges
(Moyanoet a/, 2013, Carvalhaigt a/, 2014, Manzoni & Katul, 2014). Yet,ater availability
fundamentallydetermines microbial activity in all soilsimited liquid wateravailability notably
preserve soil organic mattem highdatitudepermafrost systems, where soil water can be frozen
for most or all of the year. The transition from liquid to frozen water rapidly reduces
decomposition rates e field (Commane et al., 2017) and models (Kogea/, 2015b) albeit
with variedsensitivities(Fig. 5e).Because it lacks structures that consttiereffects of liquid
water availability on decomposition rates, MIMICS simulatapid turnover times ardw soll
carbon stoekspermafrost region@-igs. 3, 4b). In contrastC ORPSE was especially sensitive
to freezingsbecause it strondignited decomposition at low soil moisture (eq.SiIman et al.
2014). This"accentuated the strong threshold behavior in steady state turnoveroinmel
mean annual temperatures 6CQFig. &) and resulted in much lower wintertime respiration
fluxes from,CAQRPSE (Figs7, 8).

Werecognize that the abrupt changes in turnover times with frozen soils reflected in
CORPSE simulations are at least partially due to the siagée implementation of the soil
models here. Indeed, all of the models may benefit foghicitly resolving profiles of soll
temperature and moisture in their representation of biogeochemical processes to better capture
permafrost.seil.carbon dynamics (Koveha/, 2013 Koven et a/, 2017. Nevertheless,
lengthening.ofthe nofrozen season in permafrost soils has been shown to significantly increase
soil carboremission§fCommaneet a/, 2017) and these contrasting model outcomes (Figs. 5, 6)
highlight real'and important sources of uncertainty in projecting carbon cycle resfipnses
warmingand associated hydrologic changespeciallyat high latitudesThe resuk from
CORPSHprojecting larger global soil carbon changes to soil moisture (which is mainly an

indirect temperature effect) than to the direct temperature effecglbasithe larger
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645 disagreement between CORPSE and the other models in the testbed for rti@sture

646 temperature respons@sg. 5e, 6, S5), underscores both the importance and lack of model
647 agreement on this critical proceggain, however, findingppropriate data streams to

648 parameterize sqil moisture effects on substrate availability for a ¢dobl modetemains a

649 challenge. Mere broadly, uncertaedamong models and observational data sets related to
650 permafrost.sail'carbon densities and \aulbility to environmental change remain an

651 outstandingchienge for globalscale model¢Koven et a/, 2012, Burkeet a/, 2013, Kovenret
652 al, 2015b)thatreflects thdlifficulty in representing interactions between the physical soil

653 systems and the biotic agents responsible for soil organic matter farraatialecomposition.
654 Thisswerk addresses a particular challenge in comparing, evaluating andalitima

655 improving globalscale soil biogeochemical models under a common experimental framework.
656 The biogeochemical testbed provides a computationally tlactalbmerically consistent

657 framework to begin exploring the effects of different model structures and paresabdns on
658 soil carbon,stdcs and fluxes at global scaldriation in soil carbon projections among models
659 were causedrby differences in dteady statéurnover times simulated by each model, and the
660 turnover time'résponses to environmental changes over theeB€ury These can be simplified
661 into uncertaintiesraong models related to tipdysicochemical stabilization limiting microbial
662 access to.otherwise decomposable carbon substrates, temperature sensitivities of soil organic
663 matter turnoverandeffects of liquid water availabilitpn microbial activity. An important

664 application, of theestbed is motivating improvements in model structures and parameterizations.
665 Based on eurinitial results we suggest that improved parameterization of temgerat

666 sensitivitiesdineCORPSE and implementation of water availability &sfl@e decomposition

667 (especially in frozen soils) in MIMICS could improve the fidelity of simulations utiioge

668 models. Moreover, none of the carbon-only, single layer models implemented in the testbe
669 consider the effects of vertical resolution in regulating SOM turnowéghlighting gaps that

670 should be addressed with future model development. Continuing to rdsedekey

671 uncertaintieswill require greater communication between empirical andingpdemmunities.
672 As models'begin to more faithfully reflect theoretical un@erding of factors responsible for
673 soil organic matter formation and decomposition we see the testbed asoafacditate

674 regional-to globalscale model comparis@nd evaluation, while developing understanaing
675 soil biogeochemical processes
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CASA-CNP MIMICS CORPSE
Microbial Implicit with first Explicit, with two Explicit, with one
Representation | order kinetics. microbial functional | microbial pool in each
groups. litter and soil layer

(including rhizosphere
vs. bulk soils)

Litter Carbon 2 + coarse woody 2 3, assumed to be abo

Pools debris the soil mineral
surface

Soil Carbon Poolg 3 3 6, assumed to be in th
mineral soil
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938
939
940
941
942
943
944

Kinetics First order linear Reverse Michaelis Reverse Michaelis
Menten Menten

Temperature Exponential function | Temperature Temperature

Function of soil temperature dependent ¥ax & Kes | dependent Wax

(Arrhenius function)

Soil Moisture

Bell-shaped curve witl

None

Bell-shaped curve wit

Function maximum at 55%otal maximum at 55%
water saturation. liquid water saturation
greater moisture
limitation at high and
low soil moisture.
Vertical 1 layer for 1 layer (0100 cm) for | 2 layers: mineral soil
resolution biogeochemistry biogeochemistry (0-100 cm) and litter
layer
Soil texture Finely textured soil Clay content increasey Clay content increase
effects on SOC | increases transfer the allocation to, and | transfers from
protection coefficients to passive| slows the turnover of | unprdected soil pools
pool. “physically protected” | to their protected
SOM. counterparts.
Nutrients C, N, P, C-only C-only model C-only model
version used here
References Wanget al., 2010 Wiederet al., 2014; Sulmanet al., 2014

Wiederet al., 2015c

Figure 1 —=Configuration of the biogeochemical testbed. Inputs required by the testbed include

daily estimates of gross primary productivity (GPP), air temperature, soil temperature, and soll

moisture as well as static maps of soil properties and vegetation Bgpele simulations

presented here these were generated by simulations from the Community Landdviedi! f

with CRU-NCEP climate reanalyzes for the period 1901-2010, but other input streams can be

used in the testbed. From these inputs the GASK vegettion model calculates daily NPP
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and litterfall fluxes, which are delivered to each of the soil biogeochemical snoQetput from
the testbed includdaily and annually averaged carbon stocks and fluxes for vegetation and soils.

Figure 2 - Steady state soil carbon stocks (kg € simulated in the biogeochemical testbed for
(a) CASACNR, 1360 PgC; (b) MIMICS, 1420 Pg C; (c) CORPSE, 1410 Pg C; and (d) the
HWSD observations, 1260 Pg C. All values represent the sum of litter, soil, and microbial
biomass carbon that are averaged over the initialization period (1901-1920; 0-100kefodept
MIMICS, CORPSE and HWSD). NotethatMIMICS was previously calibrated against the
HWSD and theguasitogarithmic scale bar.

Figure 3 - Zonal mean of steady state soil carbon stocks (kg?Ccalculated for each latitude
band for CASAENP (green line), MIMICS (purple line) CORPSE (brown line), the HWSD
observations (solid black linel o, shaded area), and the NCSCD observafidashedlack

line) Note irregular spacing on the x-axis.

Figure 4 —Inferred soil carbon turnover times versus mean annual temperature for each grid cell
in CASA-CNP, MIMICS, and CORPSE @ respectively). Points are colored by mean annual

soil moisture (perent saturation of liquid water), and binned according to the color bar below the
figure. Black lines show the observationally derived relationship betweeremhtemnover

times and temperatute50% prediction interval (calculated by Kovetral., 2017).

Figure 5 — Globally averaged changes in (a) environmental conditions: soil tempef&tyre (

soil moisture (% saturation), and plant litter inputs (red, blue and black linpsctiesly); and

the cumulative ehange (b) soil carbon stocks simulate@A$BA-CNP, MIMICS, and CORPSE
(green, purples:and brown lines, respectively) in the full transient simulagotatdd forcing
experimentssshowing changes in soil carbon stocks following changes in only (c) GPP, (d) sall
temperature, and (e) soil moisturgor all plots, annual values were weighted by land area and

differenced from initial conditions averaged over the spin-up period.
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Figure 6 — Spatial distribution of changes in soil carbon stocks (g&simulated by the end of
the historical period (mean of 2001-2010) in the biogeochemical testbed for (a) CRBA-
(+18 Pg C), (b) MIMICS (+24 Pg C), and (c) CORPSE (-21 Pg C).

Figure 7 —Hevméller diagram showing the climatological mean daily respiratior{gaem?

d™) averaged over each latitubland for the initialization period (1901-1920; left column), and
the difference"between thi@al (2001-2010) andhitial (1901-1920)meandaily respiration rates
(right column):"Results from each model are shown for (a, b) CASA-CNP, (c, d)3d8EMiInd

(e, f) CORPSE.

Figure 8 —Mean annual cycle of (a) soil temperature, soil moisture and litter inpdilue,

and black lines;respectively) at 54°N over the last decade of the simulation (2001-2@10). T
lower panel (b) shows heterotrophic respirafiores (solid lines) and microbial biomass stocks
(dashed lines) from CASA-CNP, MIMICS, and CORPSE (green, purple, and brown lines,

respectively)far the same region and time period.
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