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 Emerging insights into factors responsible for soil organic matter stabilization and 41 

decomposition are being applied in a variety of contexts, but new tools are needed to facilitate 42 

the understanding, evaluation and improvement of soil biogeochemical theory and models at 43 

regional to global scales. To isolate the effects of model structural uncertainty on the global 44 

distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed 45 

that forces three different soil models with consistent climate and plant productivity inputs. The 46 

models tested here include a first-order, microbial implicit approach (CASA-CNP), and two 47 

recently developed microbially explicit models that can be run at global scales (MIMICS and 48 

CORPSE). When forced with common environmental drivers, the soil models generated similar 49 

estimates of initial soil carbon stocks (roughly 1400 Pg C globally, 0-100 cm), but each model 50 

shows a different functional relationship between mean annual temperature and inferred turnover 51 

times. Subsequently, the models made divergent projections about the fate of these soil carbon 52 

stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 53 

1901 and 2010. Single-forcing experiments with changed inputs, temperature, and moisture 54 

suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on 55 

soil carbon stabilization were larger than direct temperature uncertainties among models. Finally, 56 

the models generated distinct projections about the timing and magnitude of seasonal 57 

heterotrophic respiration rates, again reflecting structural uncertainties that were related to 58 

environmental sensitivities and assumptions about physicochemical stabilization of soil organic 59 

matter. By providing a computationally tractable and numerically consistent framework to 60 
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evaluate models we aim to better understand uncertainties among models and generate insights 61 

about factors regulating turnover of soil organic matter. 62 

 63 

 64 

Soils represent the largest terrestrial carbon pool on Earth, storing nearly five times as much 65 

carbon as vegetation (Jobbágy &  Jackson, 2000). In the new millennium, the theoretical 66 

understanding of factors responsible for soil organic matter stabilization has undergone 67 

significant revisions (Schmidt et al., 2011, Lehmann &  Kleber, 2015). Driven by new 68 

measurements that afford high resolution information on the chemical and physical nature of soil 69 

organic matter, these emerging theories posit that microbial access to otherwise decomposable 70 

substrates (as opposed to inherent chemical recalcitrance) governs soil organic matter 71 

stabilization and turnover. Such insights, however, remain poorly represented in global-scale 72 

models that investigate potential carbon cycle – climate feedbacks (Wieder et al., 2015a, Luo et 73 

al., 2016), despite an expansion in the number and diversity of soil biogeochemical models 74 

(Manzoni &  Porporato, 2009, Sierra et al., 2012). Building the capacity to test emerging 75 

ecological theories in global-scale models is critical to informing future research needs, testing 76 

soil biogeochemical theory, refining model features, and accelerating advancements across 77 

scientific disciplines.  78 

Earth system models (ESMs) are typically applied to project potential carbon cycle – 79 

climate interactions and inform policy decisions (Ciais et al., 2013), but these models also 80 

represent a scientific tool to test ecological insight at larger spatial and longer temporal scales. In 81 

global-scale applications where ESMs are used to generate numerical projections, soil 82 

biogeochemical models show large variation in estimates of present day soil carbon storage and 83 

widely divergent projections of soil carbon response to environmental change (Todd-Brown et 84 

al., 2013, Tian et al., 2015). When propagated into future scenarios, this creates uncertainties in 85 

the magnitude of terrestrial carbon uptake (Anav et al., 2013, Arora et al., 2013, Friedlingstein et 86 

al., 2014, Hoffman et al., 2014), and presents limitations for assessing the allowable carbon 87 

emissions that are compatible with desired climate outcomes (Jones et al., 2013, Zhang et al., 88 

2014, Jones et al., 2016). Troublingly, the soil biogeochemical models of these studies share a 89 

common structure, and thus fail to incorporate process uncertainties associated with factors 90 

regulating soil organic matter stabilization in soils. As such, they potentially underestimate the 91 
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true uncertainty associated with soil carbon responses to environmental perturbations (Bradford 92 

et al., 2016b).  Moreover, without applying these emerging soil biogeochemical concepts into 93 

global scale models, opportunities to deepen ecological insight by evaluating and refining 94 

theories are not being fully realized.   95 

Building confidence in terrestrial carbon cycle projections, therefore, requires consideration 96 

of the factors controlling the decomposition and formation of soil organic matter (Bradford et al., 97 

2016b). This research priority requires balancing demands between formulating model structures 98 

that adequately represent theoretical understanding of processes relevant for long-term soil 99 

organic matter dynamics and avoiding undue complexity (Wieder et al., 2015a, Luo et al., 2016). 100 

More practically, it requires a numerically consistent, computationally efficient simulation 101 

framework that can be used to compare and evaluate models at ecosystem- to global scales. 102 

Overlying terrestrial models generate additional variation in the biogeochemical and biophysical 103 

state upstream of the soil system—including uncertainties in climate, hydrology, and plant 104 

productivity – and the potential ecosystem responses of these factors to perturbations (Todd 105 

Brown et al. 2013; 2014). Although such considerations are critical for assessing the integrated 106 

terrestrial carbon cycle response to environmental change, they present unnecessary impediments 107 

to assessing the soil biogeochemical component of terrestrial models and advancing 108 

understanding of soil systems. Moreover, as soils respond slowly to perturbations relative to 109 

many of these upstream factors, modifications of soil model structures and parameterizations 110 

often extend spin-up time, which ultimately slows model development (Exbrayat et al. 2014; 111 

Koven et al. 2015a).  To address these challenges, we developed a soil biogeochemical testbed 112 

that facilitates the evaluation of and improvements to the process-level representation of global-113 

scale soil biogeochemical models.  114 

We compare three soil biogeochemical models that make distinct assumptions about the 115 

processes and factors regulating the formation and decomposition of soil organic matter.  One of 116 

the models reflects traditional ideas about the inherent chemical recalcitrance of soil organic 117 

matter. Thus, it implicitly represents microbial activity and follows a conventional 118 

decomposition cascade regulated by first-order decay kinetics (Schimel, 2001, Bradford &  119 

Fierer, 2012). The other two models explicitly represent soil microbial activity and physiology, 120 

but make different assumptions about interactions between microbial community activity and the 121 

physicochemical soil environment. Recognizing that multiple sources of uncertainty generate 122 
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spread among models, in this paper we focus on quantifying model structural uncertainty by 123 

comparing steady state soil carbon stocks, turnover times, and their responses over a transient 124 

simulation with soil biogeochemical models that are forced with identical inputs and 125 

environmental conditions. 126 

 127 

 128 

We created the biogeochemical testbed to conduct global-scale soil biogeochemistry 129 

simulations using a variety of forcing data sets without the computational overhead and 130 

infrastructure necessary to run a full land model. Here we introduce the capabilities of the testbed 131 

by using a single realization of climate and plant productivity estimates that serve as common 132 

inputs to each of three soil organic matter models. In the subsections that follow, we describe 133 

each component of the biogeochemical testbed in greater detail, but briefly outline the workflow 134 

and configuration of the model here (Fig. 1).  135 

Daily estimates of GPP, air temperature, soil temperature and soil moisture are needed as 136 

inputs to the testbed.  The simulations presented here used data from the Community Land 137 

Model (CLM version 4.5, discussed below).  Inputs force the Carnagie-Aimes-Stanford 138 

Approach terrestrial biosphere model (CASA-CNP) (created by Potter et al., 1993), with 139 

modifications by (Randerson et al., 1996, Randerson et al., 1997); and with N and P 140 

biogeochemistry as implemented by (Wang et al., 2010). Here we use the carbon-only version of 141 

CASA-CNP vegetation model to calculate net primary productivity (NPP) and carbon allocation 142 

to different plant tissues (roots, wood, and leaves), as well as the timing of litterfall.  Litterfall 143 

inputs are passed onto three different soil biochemical models that include the CASA-CNP 144 

model that implicitly represents microbial activity using a first-order decomposition approach, as 145 

well as two recently developed microbially explicit models that include the MIcrobial-146 

MIneralization Carbon Stabilization model (MIMICS) (Wieder et al., 2014b, Wieder et al., 147 

2015c) and the Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment model 148 

(CORPSE) (Sulman et al., 2014). For each model, we ran a spin up simulation to bring soil 149 

organic matter pools to steady state and then conducted a transient simulation including changes 150 

in climate and NPP over the historical period (1901-2010) to compare the stocks and changes of 151 

soil C pools simulated by each soil model. Below we summarize the data inputs, CASA-CNP 152 

vegetation model, the three soil carbon models applied in the testbed, and the testbed 153 
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configuration.  More detailed information can be found in the online user’s manual and technical 154 

documentation that accompanies the publically available model testbed code available at 155 

github.com/wwieder/biogeochem_testbed_1.0.  156 

Data inputs 157 

Data inputs for the biogeochemical testbed can be modified from a variety of sources, but 158 

for this study, data inputs were generated by the CLM using a satellite phenology scheme forced 159 

with the CRU-NCEP climate reanalysis (Koven et al., 2013, Oleson et al., 2013) (Fig. 1). This 160 

standard configuration of CLM generated globally gridded daily output of gross primary 161 

productivity (GPP), air temperature, soil temperature, liquid soil moisture and frozen soil 162 

moisture for the historical period (1901-2010).  Soil texture inputs to the testbed were depth-163 

weighted means in the top 50 cm of soil from the CLM surface data set (Oleson et al., 2013).  164 

The testbed assigned a single plant functional type (PFT) to each 2° x 2° grid cell, computed as 165 

the mode from the 1-km International Geosphere–Biosphere Program Data and Information 166 

System (IGBP DISCover) data set with 18 vegetation types, including grassy tundra (Loveland et 167 

al., 2000; NCAR staff). CASA-CNP defines biome-specific parameters corresponding to each 168 

PFT (Table S1). Results presented here use output from the two-degree version of CLM as input 169 

to the testbed, although the testbed operates independent of resolution and can even be 170 

configured to run for a single point or field site. Post processing of CLM history files was 171 

required to format input data that could be read into the testbed. Specifically, average soil 172 

temperature and liquid and frozen soil moisture used by the testbed are depth-weighted means in 173 

the rooting zone according to the PFT-specific root depth and root distribution (Table S1). Only 174 

liquid soil moisture was considered when computing soil moisture limits on growth for the 175 

vegetation model and decomposition in the CASA-CNP and CORPSE soil models. CORPSE 176 

also required information on frozen soil moisture to calculate air-filled pore space. MIMICS did 177 

not consider soil moisture effects on decomposition. 178 

CASA-CNP vegetation model 179 

The carbon-only version of the CASA-CNP terrestrial biosphere model calculated daily 180 

net primary production (NPP) and subsequent plant litter inputs to the soil.  Daily NPP was 181 

calculated by subtracting the sum of plant maintenance and growth respiration from the CLM-182 

derived GPP. Maintenance respiration in CASA-CNP was zero for leaves, and calculated as a 183 
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function of N content (g C g N-1 d-1) for wood and fine roots (determined from fixed biome-184 

specific C:N ratios, Table S1). These respiration rates were zero for air/soil temperatures ≤ 250 185 

K and increased exponentially with temperature using a fixed biome-specific Q10

Turnover of live leaves, wood, and fine roots occurred daily at biome-specific age-related 191 

death rates.  The leaf turnover rate increased with cold and drought stress, and was modeled 192 

following the approach of (Arora &  Boer, 2005). Non-woody plant litter was partitioned into 193 

structural and metabolic litter material as a function of the biome-specific lignin:N ratio of the 194 

plant litter (Table S1). Woody plant litter accumulated in the coarse woody debris (CWD) pool, 195 

which decomposed as a function of temperature and soil moisture for all models and included 196 

CO

 (Sitch et al., 186 

2003).  Growth respiration was a fixed fraction (0.35) of the quantity GPP minus the sum of 187 

maintenance respiration fluxes. The relative amounts of NPP allocated to leaves, wood, or fine 188 

roots were fixed biome-specific fractions that depended on leaf phenology phase (Wang et al., 189 

2010).  190 

2

Soil carbon models 199 

 respiration loss. Metabolic litter, structural litter, and decomposing CWD comprised C 197 

inputs to all soil carbon models in the testbed. 198 

Previous publications document soil models applied in the testbed, but Table 1 200 

summarizes some of the key similarities and differences among the soil models.  Additional 201 

details are also available in the user’s manual and technical documentation available in the 202 

testbed’s GitHub repository (see acknowledgements). The CASA-CNP soil carbon model had 203 

two litter pools (metabolic and structural) and three soil organic matter pools (fast, slow, and 204 

passive). Live microbial biomass was not explicitly simulated as a driver of decomposition, but 205 

the transfer of C from litter to soil pools or among soil carbon pools produced CO2 respiration 206 

losses. The decomposition of pool i (D i) is controlled pools size (Ci) and pool specific first-order 207 

kinetics (ki

�� = �� ∙ ��  ∙ �(�) ∙ �(�)        eq. 1 210 

) that are modified by environmental scalars calculated as a function of soil 208 

temperature and moisture (T and θ, respectively). 209 

Structural and metabolic litter pools decomposed into fast and slow pools as a function of lignin 211 

fraction. The CWD pool decomposed to the fast and slow SOM pools also as a function of the 212 

wood lignin fraction. Transfers of C from the fast and slow pools formed the passive pool and 213 

were a function of soil texture. The passive pool decomposed without transfers of C to other 214 
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pools. In CASA-CNP the cropland PFTs had no moisture limitation on soil organic matter 215 

decomposition and daily turnover rates for the fast, slow, and passive pools were multiplied by 216 

1.25, 1.5, and 1.5 respectively.  Neither MIMICS nor CORPSE modified decomposition rates for 217 

croplands. 218 

MIMICS had two litter pools (metabolic and structural), two live microbial biomass 219 

pools (copiotrophic and oligotrophic, referred to as r and K, respectively), and three soil organic 220 

matter pools (available, chemically protected, and physically protected). Non-woody plant litter 221 

was partitioned into metabolic and structural litter pools using a slightly different function of the 222 

lignin:N ratio than the one in the CASA-CNP model (see user’s manual). Decomposing CWD 223 

carbon was transferred to the structural litter pool. The microbial decomposition of metabolic 224 

and structural litter and available SOM pools were controlled by reverse Michaelis-Menten 225 

kinetics and modified by soil temperature: 226 

/
/

/ /( )
r K

r K i
r K r K

i

MIC
C

Kes T MIC
Vma (D x T)= +⋅      eq. 2 227 

where D i  was the decomposition of pool i, Vmax(T) was the temperature-sensitive maximum 228 

reaction velocity, Kes(T) was the temperature-sensitive half-saturation constant specific to the r 229 

or K microbial pool, Ci  was the carbon pool, and MICr/K  was the r or K microbial pool. 230 

Decomposition fluxes also controlled the growth of microbial biomass pools and had CO2 231 

respiration losses that were determined by fixed (flux-specific) microbial growth efficiencies. 232 

Microbial turnover, which was proportional to annual NPP, transferred C to physically protected, 233 

chemically protected, and available SOM pools, without CO2 respiration loss. Desorption of the 234 

physically protected pool followed first-order kinetics and was described as a function of soil 235 

clay content, without CO2 loss. Oxidation of the chemically protected SOM, which transferred C 236 

to the available pool, followed reverse Michaelis-Menten kinetics and was therefore dependent 237 

on the size of standing microbial biomass pools, but as none of the carbon is assimilated into 238 

microbial biomass there are no associated CO2

CORPSE had separate surface litter layer pools and SOM pools, each with three 240 

chemically-defined carbon species (labile, chemically resistant, and dead microbes) and a live 241 

microbial biomass pool. The surface litter pools were all considered unprotected while the SOM 242 

pools had unprotected and protected counterparts. Metabolic and structural leaf litter was 243 

transferred to the labile and chemically resistant surface litter pools, respectively, without CO

 losses.   239 

2 244 
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respiration losses.  Similarly, metabolic and structural root litter was transferred to labile and 245 

chemically resistant unprotected soil carbon pools, respectively. Root exudates, calculated as a 246 

fixed 2% of NPP, also contributed to the labile unprotected soil pool. We reduced root litter input 247 

by the amount of root exudate C added so total C inputs to CORPSE were identical to those of 248 

the other soil models. Carbon from the decomposing CWD pool was transferred to the 249 

chemically resistant litter pool. No carbon was transferred between the surface litter and soil 250 

layers. The microbial decomposition of unprotected labile, chemically resistant, and dead 251 

microbe litter and SOM pools, CO2

�� = ����,�(�) ∙ � ������3 �1 − ������2.5 ∙ �� ������+���∗∑ ���       eq. 3 254 

 fluxes, and the growth of microbial biomass were controlled 252 

by the existing microbial biomass and modified by soil temperature and moisture: 253 

where θ was volumetric liquid soil water content and θsat was saturation soil water content. 255 

Microbial growth efficiencies used fixed, pool-specific fractions, with labile C having a high 256 

associated growth efficiency and chemically resistant C having a low efficiency. The model 257 

assumed that the microbial biomass limitation on decomposition was related to the microbial 258 

biomass as a fraction of total carbon. As a result, decomposition rate responded linearly to total 259 

carbon content (similar to a first-order model) but was accelerated by greater labile C inputs 260 

(which stimulated microbial biomass growth) and suppressed when labile C was depleted 261 

relative to chemically resistant C. Microbial turnover, which was proportional to a fixed turnover 262 

rate, transferred C to the unprotected dead microbes pool, with CO2 respiration loss. Carbon was 263 

transferred at fixed, first-order rates from the unprotected soil pools to their protected 264 

counterparts. These rates varied with clay content and chemical species (with dead microbes 265 

having a relatively higher protection rate), and occurred without CO2

Testbed configuration, simulations, & analyses  268 

 respiration losses. 266 

Protected C was transferred back to unprotected pools at a different fixed, first order rate. 267 

The simulations for each SOM model were carried out in three steps: initialization, spinup, 269 

and transient simulations, which are described below.  We initialized CASA-CNP vegetation 270 

pools by running the testbed with 1901 forcings for 100 years. This initialization created more 271 

stable vegetation pools and litter inputs for subsequent simulations. The state of the CASA-CNP 272 

vegetation pools (but not SOM pools) from this initialization simulation were used to initialize 273 

spinup runs for all SOM models.     274 
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Soil carbon pools were spun up by cycling over 1901-1920 forcings until organic matter 275 

pools reached equilibrium. An SOM model was considered to be in equilibrium when all three of 276 

the following criteria were met between 20-year cycles: global litter plus soil carbon stocks 277 

changed less than 0.01 Pg, total litter plus soil carbon in > 98% of grid cells changed less than 1 278 

g C m-2

We conducted full transient simulations from 1901 – 2010. For each of the three soil models 290 

currently implemented in the testbed, we compared: 1) initial conditions following model spinup; 291 

2) changes in soil carbon pools over the transient simulation; and 3) seasonal patterns of 292 

heterotrophic respiration. Here we focus on total soil carbon stocks that are simulated by each 293 

model, which were calculated as the sum of all litter, microbial biomass, and soil carbon pools. 294 

Beyond initial carbon stocks, estimates of steady-state soil carbon turnover times provide a 295 

metric to evaluate the emergent relationship between climate the mean residence time of various 296 

C stocks (Koven et al., 2017). Recognizing that turnover times vary with model structure in 297 

transient simulations (Rasmussen et al., 2016), turnover times were calculated by dividing initial 298 

soil carbon stocks by heterotrophic respiration fluxes for each model, masking out points with 299 

initial productivity < 100 g C m

, and total litter plus soil carbon in > 98% of grid cells changed less than 0.1%. Spinup 279 

times varied between models. CASA-CNP required 10,000 years of an accelerated spinup 280 

followed by 10,000 years of normal spinup in order to reach equilibrium. For the accelerated 281 

spinup, the decomposition rate of the passive pool was increased tenfold.  Following accelerated 282 

spinup, the passive carbon stock was multiplied tenfold before starting the normal spinup phase. 283 

MIMICS organic matter pools required 12,000 years to reach equilibrium, with the physically 284 

protected pool requiring the longest spinup time. CORPSE organic matter pools required 50,000 285 

years to reach equilibrium, primarily due to slow continuing accumulation of chemically 286 

resistant litter in high latitudes. In all models, these spinup times are still prohibitively long for 287 

doing many repeated simulations or parameter estimation, and highlight a research priority that 288 

must be addressed (Luo et al., 2016) in this and other work. 289 

-2 y-1. Simulated results were compared to an observationally 300 

derived functional relationship with mean annual temperature from Koven and others (2017) that 301 

was calculated by dividing soil carbon stocks from the Harmonized World Soils Database 302 

(HWSD) (FAO et al., 2012) and Northern Circumpolar Soil Carbon Database (Hugelius et al., 303 

2013) by MODIS NPP estimates (Zhao et al., 2005). Although this turnover time vs. climate 304 

relationship is derived from present day estimates of plant productivity, we contend that these 305 
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inferred turnover times represent important global-scale patterns that models should be expected 306 

to replicate.  307 

Several additional experiments were conducted that demonstrate the utility of the testbed in 308 

rapidly assessing and understanding variation among models.  Initial simulations suggested that 309 

soil texture potentially mediated soil C responses among models. Thus, we repeated the spinup 310 

and fully transient simulations with globally consistent soil texture (20% clay, 40% silt, and 40% 311 

sand).  This global loam experiment only changed the soil texture effects on particular transfer 312 

coefficients and turnover times that were simulated by each soil biogeochemical model and did 313 

not concurrently modify the soil hydraulic conditions.  Second, to decompose the effects of 314 

particular forcings on soil carbon stocks we conducted three isolated-forcing experiments where 315 

plant productivity, soil temperature, and soil moisture individually changed over the 20th century, 316 

but the remaining input variables were held constant (cycling over 1901-1920 values as in the 317 

spinup). We compared the time series of soil carbon changes from isolated forcing experiments 318 

to the fully transient 20th

 320 

 century simulations319 

Initial Conditions 321 

When forced with CRU-NCEP climate, simulated global mean annual soil temperatures 322 

were 15.6°C and mean liquid soil moisture was 42.1% of saturation (Fig. S1a, b, averaged over 323 

the initialization period, 1901-1920). GPP estimates from CLM4.5sp totaled 117 ± 1.1 Pg C y-1 324 

(mean ± 1 σ) and initial NPP estimates from CASA-CNP averaged 48 ± 0.8 Pg C y-1 (Fig. S2a). 325 

With these inputs, the biogeochemical testbed generated total carbon stocks (including litter, soil 326 

organic matter and microbial biomass) totaling 1360, 1420, and 1410 Pg carbon for CASA-CNP, 327 

MIMICS, and CORPSE, respectively (Fig. 2a-c; Fig. S3). For comparison, soil C estimates from 328 

the HWSD totaled 1260 Pg C globally (Fig. 2d; 0-100 cm depth, as regridded by (Wieder et al., 329 

2014a). Our aim here is not evaluate the spatial distribution of soil carbon stocks simulated by 330 

any of the models, although the testbed offers opportunities for parameter estimation in single 331 

point and global simulations (e.g., Hararuk et al. 2015) We note, however, that MIMICS was 332 

calibrated against the HWSD (Wieder et al., 2015c), whereas CASA-CNP and CORPSE were 333 

not similarly calibrated. We also recognize that global stocks of ‘litter’ C are not clearly defined 334 

in globally gridded soil carbon estimates, and that the HWSD likely underestimates high latitude 335 

soil C stocks (Todd-Brown et al. 2013). Thus, we also present permafrost soil C estimates from 336 
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the NCSCD (0-100 cm depth), which shows larger soil carbon stocks in permafrost regions 337 

(Figs. 3, S3). The three soil models implemented in the testbed adequately represented global 338 

soil carbon stocks, falling within benchmark ranges for global soil carbon stocks given an 339 

observationally-consistent field of plant productivity (Todd-Brown et al., 2014). 340 

Despite general agreement of global soil C stocks among models, they exhibited notably 341 

different spatial distributions. Across high latitudes, CASA-CNP and CORPSE generated steady-342 

state soil C densities that were closer to observations from the NCSCD and notably larger than 343 

those simulated by MIMICS or observed in the HWSD (Figs. 2, 3, S3). Conversely, at low 344 

latitudes, CASA-CNP and CORPSE displayed soil carbon densities well below estimates from 345 

MIM ICS and the HWSD. The global loam experiment indicated that steady-state carbon stocks 346 

simulated in CASA-CNP and MIMICS showed a greater sensitivity to soil texture (-95 and -178 347 

Pg C, respectively, compared to control simulation) than CORPSE (+ 27 Pg C). Whereas CASA-348 

CNP showed relatively homogenous reductions in steady-state soil carbon stocks, MIMICS 349 

showed substantially larger soil C differences in regions of high clay content (e.g., much of the 350 

tropics, the southeastern US, and SE Asia, Fig. S4).  All three models generally showed larger 351 

carbon stocks in tundra regions with loam soils, especially CORPSE.   352 

Although the soil models used similar temperature functions, they showed large 353 

differences in patterns of inferred turnover times and temperature (Fig. 4).  Models and 354 

observations showed the longest turnover times in grid cells with colder mean annual 355 

temperatures. Observations suggested that over the cold domain (mean annual temperature < 356 

0°C) soil carbon turnover had a higher temperature sensitivity (steeper slope), whereas over the 357 

warm domain (mean annual temperature > 15°C) turnover times had a lower temperature 358 

sensitivity (shallow slope; Koven et al., 2017). The CASA-CNP soil model simulated a log-359 

linear relationship between temperature and the logarithm of turnover time, with variation among 360 

individual grid cells largely attributed to differences in soil moisture (Fig. 4a). In the cold 361 

domain, CASA-CNP matched the higher temperature sensitivity of soil carbon turnover better 362 

than the two microbially explicit models. In warmer sites, however, CASA-CNP showed a linear 363 

decrease in log turnover times (especially in mesic and wet systems), that was not consistent with 364 

observation-based estimates.  (The cluster of grid cells with very low turnover times are 365 

agricultural grid cells, mainly in India, that had high productivity, but very low soil carbon stocks 366 

owning to how agricultural decomposition rates are handled in in CASA-CNP). By contrast, 367 
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MIMICS failed to represent high temperature sensitivity in the cold-domain, but over the warm-368 

domain MIMICS captured the lower temperature sensitivity (flat slope) of inferred turnover 369 

times, although the intercept may be too high (Fig. 4b).  Finally, CORPSE showed a stronger 370 

than observed temperature sensitivity in all cases (Fig. 4c), with long turnover times simulated 371 

by CORPSE in the cold-domain resulting in large carbon stocks at high latitudes. Thus, despite 372 

similarities in the overall soil C stocks represented by these models we find strong differences in 373 

the spatial distribution and potential temperature sensitivities among CASA, MIMICS, and 374 

CORPSE that may influence projections of soil carbon change over the historical period. 375 

 376 

Transient Response 377 

By the end of the transient simulation period, global mean annual soil temperature 378 

increased by 1.1 °C and mean annual soil moisture (calculated as percent saturation) increased 379 

by 0.5%, relative to the initial conditions (Fig. 5a). Notably, high latitude soils showed the 380 

greatest changes, generally becoming warmer and wetter (Fig. S1c-d), with higher wintertime 381 

soil temperatures increasing liquid water availability for longer periods of time. By the start of 382 

the 21st century, GPP increased by 19 Pg C y-1 (+16%); meanwhile NPP increased 7 Pg C y-1

Changes in productivity and climate drove a net accumulation of soil carbon in CASA-387 

CNP and MIMICS by the end of the simulation (+18.1 and +24.1 Pg C, respectively), whereas 388 

CORPSE lost soil carbon over the same period (-21.7 Pg C; Fig. 5b). Despite receiving identical 389 

litter inputs and climate forcing, the three soil models tested here showed dramatically different 390 

spatial patterns of soil carbon gains and losses (Fig. 6). Particular changes in soil carbon stocks 391 

largely depended on the balance of changes in plant productivity and soil conditions, along with 392 

different assumptions made by each model. For example, in tundra ecosystems plant productivity 393 

increased by 20-30%, whereas soil temperature warmed by less than 1°C (Figs. S1, S2).  In 394 

CASA-CNP and MIMICS this increased plant productivity overwhelmed soil carbon losses from 395 

the increased heterotrophic respiration, leading to net soil carbon accumulations – mainly in the 396 

litter pools simulated by both models.  By contrast, CORPSE lost large amounts of soil carbon in 397 

these regions (Fig. 6). Soil texture largely modulated the initial soil carbon stocks simulated by 398 

 383 

(+15%; Figs. 5a; S2b), and similar in magnitude to an ensemble of CMIP5 Earth system models 384 

(Wieder et al., 2015b). Higher plant productivity increased global vegetation carbon stocks 385 

simulated by CASA-CNP by 36 Pg C, whereas coarse woody debris stocks declined by 0.7 Pg C.  386 
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each model (Fig. S4), but had a more muted effect on transient soil C dynamics. In the global 399 

loam experiment, soil carbon accumulations in CASA-CNP and MIMICS were dampened (+17.7 400 

and +19.0 Pg C, respectively), whereas CORPSE lost slightly more soil carbon over the same 401 

period (-22.1 Pg C). MIMICS assumed that clay rich soils preferentially stabilize microbial 402 

residues in physically protected soil organic matter pools; thus, in the global loam experiment 403 

soil carbon accumulations were approximately 200 g C m-2

The testbed allowed us to parse out gross changes among models from isolated forcing 406 

experiments, rather than just seeing the net changes over the fully transient simulation. Isolated 407 

forcing experiments showed that MIMICS had a higher sensitivity to changes in plant 408 

productivity and temperature than the other models—accumulating twice the amount of C as 409 

CORPSE in the isolated GPP experiment, and losing twice as much C in the isolated soil 410 

temperature simulation (Figs. 5c,d, S5).  Most of these differences, however, took place in mid-411 

to-low latitudes (< 50°N), where MIMICS simulated significantly larger initial carbon stocks 412 

than the other two models (Fig. 3). In MIMICS, microbial turnover increased with higher plant 413 

productivity (Wieder et al., 2015c). This served as a density dependent control over 414 

decomposition rates (Buchkowski et al., 2017), but it also increased the inputs of microbial 415 

residues to soil organic matter pools.  416 

 (roughly 20%) less across the tropics 404 

in MIMICS (data not shown).   405 

Our transient simulations highlighted uncertainties in understanding temperature and 417 

moisture sensitivity in cold regions. Warmer temperatures ultimately drove the high latitude soil 418 

C losses simulated over the 20th century; but the isolated forcing experiments demonstrated that 419 

CASA-CNP and MIMICS had stronger direct sensitivities to changing temperatures (Figs. 5, 6, 420 

S5). By contrast, CORPSE showed the largest sensitivity to isolated soil moisture forcings 421 

(including thawing of frozen soil water), and lost more than three times the amount of C as the 422 

comparable CASA-CNP simulation (Fig. 5e, S5). Nearly all of the simulated C losses came from 423 

high latitude ecosystems—where soil moisture changes are mainly controlled by freeze/thaw 424 

state and the thawing of frozen soils allowed the large C stocks built up in frozen conditions to 425 

decompose. Thus, actual temperature sensitivity may be a combination of metabolic sensitivities 426 

to temperature, as well as interactions between temperature and moisture via controls over liquid 427 

water availability in soils subject to freezing (Koven et al., 2015b, Commane et al., 2017).  428 
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 To further explore differences among models we looked at mean annual cycles of 429 

heterotrophic respiration from the testbed (Fig. 7).  By design, at the beginning of the simulations 430 

litter inputs equaled heterotrophic respiration rates for all models (48.1 Pg C y-1).  A climatology 431 

of annual soil respiration rates averaged across latitudinal bands, therefore, illustrates differences 432 

in the seasonal cycle of carbon fluxes from each model.  As each soil model in the testbed was 433 

driven by a common climate and vegetation model, differences among the left panels of Figure 7 434 

reflect distinctions in the seasonal amplitude of terrestrial net ecosystem exchange with the 435 

atmosphere. Across mid-latitudes in the northern hemisphere CASA-CNP showed the lowest 436 

amplitude in seasonal CO2 fluxes (Fig. 7a).  Over this same region, MIMICS showed higher 437 

summertime respiration than CASA-CNP, but both models simulated similar wintertime 438 

respiration rates (Fig. 7c).  By contrast, CORPSE had very low mid-latitude heterotrophic 439 

respiration fluxes in winter, but much larger summertime rates—generating the highest 440 

amplitude seasonal cycle of all the models (Fig. 7e).  The stronger seasonal cycle shown by 441 

CORPSE is consistent with the high transient sensitivity to freeze/thaw state by that model. 442 

These distinctions were amplified over time (Fig. 7, right panels), showing a global 443 

intensification of heterotrophic CO2 fluxes between the first and last decades of the simulation. 444 

By the end of the transient simulation annual CO2 fluxes were no longer equal among models, 445 

however, as soil carbon losses were greater for CORPSE, which simulated heterotrophic 446 

respiration fluxes that were roughly 1 Pg C y-1

To clarify differences among models we focused on fluxes from a single latitudinal band 453 

(here 54̊N) over the last decade of the simulation.  Figure 8 illustrates the seasonal cycle of 454 

environmental drivers (temperature, soil moisture, and litter inputs), as well as the annual 455 

evolution of heterotrophic respiration fluxes and microbial biomass represented by each model.  456 

Again, CASA-CNP and MIMICS produced similar wintertime fluxes.  With warming in spring 457 

(and greater availability of liquid water) heterotrophic respiration rates quickly accelerated in all 458 

models, but this occurs sooner in the year for both CASA-CNP and CORPSE (Fig. 8).  The 459 

 higher than CASA-CNP and MIMICS. By the end 447 

of the transient simulations, we also note a qualitative difference in the latitude-seasonal 448 

responses of HR between CORPSE and the other models in the mid- to high- latitude regions, 449 

where CORPSE tends to show respiratory increases earlier in the season and more northerly than 450 

the baseline climatological cycle, while the other two models tend to show increases that are 451 

more closely aligned in seasonality and latitude with the baseline climatology (Fig. 7b,d,f). 452 
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annual respiration rates simulated by CASA-CNP generally tracked soil temperature changes, 460 

with maximum fluxes corresponding to periods with the warmest soil temperatures.  By contrast, 461 

the maximum respiration rates simulated by the microbially explicit models were somewhat 462 

lagged from the CASA-CNP fluxes—corresponding to periods when litter inputs and 463 

temperature were also highest. Moreover, MIMICS and CORPSE both simulated higher 464 

maximum heterotrophic respiration rates, leading to a higher amplitude in the seasonal cycle of 465 

soil CO2

 468 

 fluxes.  Some of this temporal shift in respiration rates was likely related to changes in 466 

microbial biomass stocks, which broadly tracked the seasonal cycle of litter inputs. 467 

 469 

Our results suggest the actual uncertainty related to soil carbon projections may be larger 470 

than previously realized. Todd-Brown and co-authors (2013, 2014) reported a wider range of 471 

initial soil carbon stocks and trajectories over the 21st century from an ensemble of CMIP5 472 

models, but each of these models was forced with spatially-varying and highly model-473 

idiosyncratic climate and productivity estimates. By using a consistent forcing among models, 474 

our results better capture the variation in soil carbon stocks and their potential response to 475 

environmental change that is caused by different model assumptions, which is translated into 476 

model structures, and particular modle parameterizations. Indeed, given their common forcing, 477 

global similarities in testbed results are not surprising (Ahlström et al., 2012, Friend et al., 2014). 478 

Models in the biogeochemical testbed, however, more broadly sample the theoretical space 479 

related to soil organic matter decomposition and stabilization (Wieder et al., 2015a). This 480 

variation in model form (and parameterization) translated into differences among models in the: 481 

distribution of steady state soil carbon stocks (Figs. 2, 3); functional relationship of turnover time 482 

with mean annual temperature (Fig. 4); transient response of soil carbon stocks to environmental 483 

perturbations (Figs. 5, 6) and seasonal dynamics of heterotrophic respiration (Figs. 7, 8).  We 484 

acknowledge that some model spread is likely explained by differences in calibration 485 

approaches; specifically, MIMICS was calibrated against the global pattern of C stocks estimated 486 

by HWSD, while CORPSE and CASA-CNP were not (Fig. 2). Future calibration of all three 487 

models against the same benchmark (e.g., Fig. 4) may reduce uncertainty in the transient 488 

responses among models (Fig. 5). 489 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Through the historical period, CASA-CNP and MIMICS show similar changes in global 490 

soil carbon stocks (+18 and +24 Pg C, respectively), which were opposite in sign from the soil 491 

carbon changes simulated by CORPSE (-21 Pg C; Fig. 5). When combined with changes to 492 

vegetation C stocks from the CASA-CNP simulations (+36 Pg C) projected terrestrial carbon 493 

uptake would fall well short of terrestrial carbon sink estimated by the Global Carbon Project 494 

(62-142 Pg C between 1959-2010, assuming uncertainty of 0.8 Pg C y-1; Houghton et al., 2012, 495 

Le Quéré et al., 2014). Although our simulations lack representation of land use and land cover 496 

change, results from the testbed demonstrate that in order to capture inferred trends in terrestrial 497 

carbon uptake over the end of the 20th

Physicochemical stabilization 506 

 century much less carbon would have to accumulate in 498 

vegetation pools of land models that applied CASA-CNP and MIMICS than would be necessary 499 

in a model using CORPSE. Here, we focus on understanding the structural uncertainties among 500 

models that broadly relate to differences among models in their representation of 501 

physicochemical stabilization of soil organic matter, temperature sensitivities, and moisture 502 

sensitivities. Notably, we found that uncertainties regarding the physicochemical stabilization of 503 

soil organic matter and freeze-thaw dynamics were greater than uncertainties related to direct 504 

temperature sensitivities among models.  505 

Physical limitation of microbial access to otherwise decomposable substrates plays a 507 

critical role in preserving soil organic matter (Conant et al., 2011, Dungait et al., 2012, Schimel 508 

&  Schaeffer, 2012, Cotrufo et al., 2013, Lehmann &  Kleber, 2015). Concurrently, microbial 509 

biomass serves as both the catalyst for soil organic matter decomposition and the source of soil 510 

organic matter formation, through the mineral stabilization of microbial residues and necromass 511 

(Grandy &  Neff, 2008, Liang et al., 2011, Kallenbach et al., 2016). While the three models 512 

included in the testbed all represented this process, their implementations and assumptions 513 

differed substantially, reflecting important uncertainties in how to appropriately represent pore-514 

scale physicochemical stabilization mechanisms in global-scale models. Our global loam 515 

experiment illustrated that steady-state soil carbon dynamics in CASA-CNP and MIMICS 516 

showed a greater sensitivity to soil texture than CORPSE (Fig. S4). While the appropriateness of 517 

soil texture to describe diverse stabilization mechanisms on mineral surfaces and within 518 

aggregates is in itself debatable (Mikutta et al., 2006, Doetterl et al., 2015), texture still serves as 519 

a useful proxy for which gridded input data sets are available for global-scale simulations (Bailey 520 
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et al. 2017). We also note that few of the ESMs represented in the CMIP5 archive use any 521 

information about edaphic properties (texture, mineralogy, or pH) in their soil biogeochemical 522 

sub-models.  523 

Regional differences in initial soil carbon stocks highlight the need to better resolve 524 

factors regulating physicochemical stabilization of soil organic matter in models. For example, 525 

CASA-CNP and CORPSE simulated lower than observed steady-state soil carbon densities in 526 

warmer ecosystems (Figs. 2, 3). This suggests that the physicochemical stabilization mechanisms 527 

implicitly represented in these models may not be strong enough to counteract environmental 528 

conditions that would otherwise favor rapid decomposition (Fig. 4).  By contrast, MIMICS 529 

simulated higher soil carbon stocks in warm regions that were more consistent with observation-530 

based estimates.  Similarly, variation among models in transient simulations reflects uncertainty 531 

related to the ultimate fate of new carbon that enters terrestrial ecosystems. In first order models, 532 

like CASA-CNP, variation in carbon inputs largely determines the variation in soil carbon 533 

changes, reflecting the linear relationship between inputs and turnover times (Todd-Brown et al., 534 

2014, Koven et al., 2015a). Accordingly, increased productivity in the transient simulation 535 

increased soil carbon stocks in CASA-CNP, especially in colder climates with longer base 536 

turnover times (Figs. 5c, 6a, S5b). In the microbially explicit models, increased plant 537 

productivity and litter inputs also build proportionally larger microbial biomass pools (Fig. S2c-538 

d).  These larger microbial biomass pools can simultaneously accelerate the decomposition of 539 

organic matter and build soil carbon stocks.  The balance of these factors depends on 540 

assumptions about the catalytic capacity of larger microbial biomass pools vs. the potential fate 541 

of microbial residues.   542 

Increased plant productivity over the 20th century increased the rate at which microbial 543 

residues contributed to soil organic matter pools. MIMICS assumes that finely textured soils 544 

have a much greater capacity to stabilize microbial residues (Wieder et al., 2014b), accounting 545 

for the larger tropical soil C accumulation (Fig. 6b, S5b). In contrast, larger microbial biomass 546 

pools simulated by CORPSE (as well as increased root exudation) accelerated the decomposition 547 

of unprotected soil organic matter and litter stocks resulting in smaller increases in C stocks 548 

globally (Fig. 5c, 6c). The rapid turnover times simulated by CORPSE in temperate and tropical 549 

ecosystems (Fig. 4) suggest that little of the new carbon will be retained in CORPSE simulations, 550 

an interpretation supported by results from the isolated GPP simulation (Fig. S5b).  551 
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Indeed, losses of soil carbon have been observed with increasing plant productivity in 552 

high-latitude ecosystems (Hartley et al., 2012). In temperate forests, multi-decadal litter 553 

manipulation studies generally show modest carbon accumulation in organic soil horizons, but 554 

no change in the carbon stocks of mineral soils (Bowden et al., 2014, Lajtha et al., 2014a, Lajtha 555 

et al., 2014b). This suggests a more nuanced relationship between plant productivity and soil 556 

carbon storage may be necessary to understand and simulate likely terrestrial carbon responses to 557 

changes in plant productivity. The models in the biogeochemical testbed take a step in this 558 

direction, but our results highlight the need to refine the representation of factors affecting 559 

microbial access to otherwise decomposable substrates in soils.  560 

Temperature sensitivities 561 

Uncertainties in observed soil biogeochemical responses to temperature present notable 562 

challenges for projecting terrestrial carbon dynamics in a warming world (Jones et al., 2003, 563 

Davidson &  Janssens, 2006, Conant et al., 2011). Although theory predicts that warmer 564 

temperatures should accelerate soil organic matter decomposition and lead to soil carbon losses, 565 

experimental evidence for these assumptions remains unclear (Bradford et al., 2016b). Recent 566 

syntheses, however, demonstrate that experimental warming consistently increases soil 567 

respiration rates (Carey et al., 2016) and leads to soil carbon losses in sites where initial soil 568 

carbon stocks were large (Crowther et al., 2016). Models in the testbed reflected these general 569 

expectations (Fig. 5), but extending the insight provided from these relatively short-term 570 

experimental findings to decadal- and centennial-scales increases the uncertainty associated with 571 

societally relevant carbon cycle projections. Moreover, these syntheses cannot decompose the 572 

changes in productivity vs. turnover times associated with warming; however, they do 573 

corroborate field studies suggesting that warmer summertime temperature may be accelerating 574 

the decomposition of soil organic matter in the Alaskan tundra and thereby turning Arctic 575 

landscapes into a source of carbon dioxide to the atmosphere (Schuur et al., 2009, Commane et 576 

al., 2017).  Collectively, these observations highlight the importance of capturing the appropriate 577 

soil carbon temperature sensitivity for understanding potential carbon cycle – climate feedbacks, 578 

especially in carbon-rich, high latitude ecosystems.  579 

Differences in base decomposition rates and temperature sensitivities largely describe 580 

differences in steady state and transient responses among first-order models (Todd-Brown et al., 581 

2014), but understanding apparent temperature response functions that emerge from microbially 582 
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explicit models is somewhat more complicated. Decomposition rates of organic matter in 583 

MIMICS and CORPSE were controlled by reverse Michaelis-Menten based kinetics (eq. 2, 3), 584 

and both models applied temperature functions to calculate maximum reaction velocities (Vmax) 585 

with similar temperature sensitivities (Q10, data not shown). MIMICS, however, also calculates a 586 

temperature sensitive half-saturation constant (Kes).  This likely dampened the climate sensitivity 587 

of soil carbon turnover times (German et al., 2012) and decreased the apparent Q10 of simulated 588 

reaction rates (Davidson &  Janssens, 2006). These factors may explain the shallow slope in the 589 

MIMCS log turnover time – temperature relationships in warmer domains (Fig. 4b). By contrast, 590 

CORPSE used a fixed half-saturation constant, applied an Arrhenius equation to calculate Vmax 591 

Model structure also determines variation in the transient responses among models (Jones 599 

et al., 2005, Rasmussen et al., 2016). For example, steady state turnover times simulated by 600 

MIMICS showed the lowest temperature sensitivity (Fig. 4), but the model also had the largest 601 

soil C losses in the isolated soil warming experiment (Fig. 5d); whereas the opposite was true for 602 

CORPSE. At high latitudes, most soil carbon simulated by MIMICS was in pools that were 603 

vulnerable to microbial degradation and, therefore, sensitive to changes in temperature (Figs. 5d, 604 

S5c). By contrast, much of the soil carbon simulated by CASA-CNP was in pools with slower 605 

decomposition rates, thus extending the time needed for temperature sensitivities to emerge.  606 

Indeed, previous work indicates that over decadal times scales MIMICS has a faster response to 607 

experimental warming, compared to a first order model, but over centennial time scales 608 

ultimately loses less carbon (Wieder et al., 2014b). Moreover, local effects like edaphic 609 

properties, substrate quality, microbial community composition, soil moisture, and redox 610 

conditions compound uncertainty in assessing the vulnerability of soil carbon stocks to 611 

temperature change (Davidson &  Janssens, 2006, Bradford et al., 2014, Bradford et al., 2016a). 612 

Interactions between soil moisture and temperature resulted in more modest C losses from 613 

(resulting in higher temperature sensitivities at lower temperatures), and assumed that the 592 

chemical quality of different substrate pools conferred different temperature sensitivities. 593 

Additionally, CORPSE strongly limited decomposition when soil water was moistly frozen while 594 

MIMICS did not include an explicit soil moisture dependence. As a result, the inferred turnover 595 

times simulated by CORPSE in temperate and tropical ecosystems were very fast, but a strong 596 

moisture limitation to decomposition rates in frozen soils drove the change in slope of the log 597 

turnover times with air temperature in Figure 4c.  598 
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CORPSE in the isolated soil temperature experiment (Fig. 5d,e; discussed next). Articulating the 614 

true uncertainty associated with any projection of soil carbon change, therefore, requires a deeper 615 

investigation into the structural assumptions represented in models—which extends beyond 616 

temperature sensitivity of carbon turnover times. 617 

Moisture sensitivities  618 

At multiple scales of interest, measuring and modeling soil water availability remains 619 

highly uncertain (Loescher et al., 2014, Clark et al., 2015). Subsequently, translating the effects 620 

of the soil hydrologic state into biogeochemical models also presents enormous challenges 621 

(Moyano et al., 2013, Carvalhais et al., 2014, Manzoni &  Katul, 2014). Yet, water availability 622 

fundamentally determines microbial activity in all soils. Limited liquid water availability notably 623 

preserves soil organic matter in high-latitude permafrost systems, where soil water can be frozen 624 

for most or all of the year. The transition from liquid to frozen water rapidly reduces 625 

decomposition rates in the field (Commane et al., 2017) and models (Koven et al., 2015b), albeit 626 

with varied sensitivities (Fig. 5e). Because it lacks structures that consider the effects of liquid 627 

water availability on decomposition rates, MIMICS simulated rapid turnover times and low soil 628 

carbon stocks in permafrost regions (Figs. 3, 4b). In contrast, CORPSE was especially sensitive 629 

to freezing because it strongly limited decomposition at low soil moisture (eq. 3; Sulman et al. 630 

2014).  This accentuated the strong threshold behavior in steady state turnover times around 631 

mean annual temperatures of 0°C (Fig. 4c) and resulted in much lower wintertime respiration 632 

fluxes from CORPSE (Figs. 7, 8).  633 

We recognize that the abrupt changes in turnover times with frozen soils reflected in 634 

CORPSE simulations are at least partially due to the single-layer implementation of the soil 635 

models here. Indeed, all of the models may benefit from explicitly resolving profiles of soil 636 

temperature and moisture in their representation of biogeochemical processes to better capture 637 

permafrost soil carbon dynamics (Koven et al., 2013; Koven et al., 2017). Nevertheless, 638 

lengthening of the non-frozen season in permafrost soils has been shown to significantly increase 639 

soil carbon emissions (Commane et al., 2017); and these contrasting model outcomes (Figs. 5, 6) 640 

highlight real and important sources of uncertainty in projecting carbon cycle responses to 641 

warming and associated hydrologic changes, especially at high latitudes. The results from 642 

CORPSE projecting larger global soil carbon changes to soil moisture (which is mainly an 643 

indirect temperature effect) than to the direct temperature effect, as well as the larger 644 
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disagreement between CORPSE and the other models in the testbed for moisture than 645 

temperature responses (Fig. 5e, 6, S5), underscores both the importance and lack of model 646 

agreement on this critical process. Again, however, finding appropriate data streams to 647 

parameterize soil moisture effects on substrate availability for a global-scale model remains a 648 

challenge. More broadly, uncertainties among models and observational data sets related to 649 

permafrost soil carbon densities and vulnerability to environmental change remain an 650 

outstanding challenge for global-scale models (Koven et al., 2012, Burke et al., 2013, Koven et 651 

al., 2015b) that reflects the difficulty  in representing interactions between the physical soil 652 

systems and the biotic agents responsible for soil organic matter formation and decomposition.   653 

This work addresses a particular challenge in comparing, evaluating and ultimately 654 

improving global-scale soil biogeochemical models under a common experimental framework. 655 

The biogeochemical testbed provides a computationally tractable, numerically consistent 656 

framework to begin exploring the effects of different model structures and parameterizations on 657 

soil carbon stocks and fluxes at global scales. Variation in soil carbon projections among models 658 

were caused by differences in the steady state turnover times simulated by each model, and the 659 

turnover time responses to environmental changes over the 20th century. These can be simplified 660 

into uncertainties among models related to the physicochemical stabilization limiting microbial 661 

access to otherwise decomposable carbon substrates, temperature sensitivities of soil organic 662 

matter turnover, and effects of liquid water availability on microbial activity. An important 663 

application of the testbed is motivating improvements in model structures and parameterizations. 664 

Based on our initial results we suggest that improved parameterization of temperature 665 

sensitivities in CORPSE and implementation of water availability effects on decomposition 666 

(especially in frozen soils) in MIMICS could improve the fidelity of simulations using those 667 

models. Moreover, none of the carbon-only, single layer models implemented in the testbed 668 

consider the effects of vertical resolution in regulating SOM turnover—highlighting gaps that 669 

should be addressed with future model development. Continuing to resolve these key 670 

uncertainties will require greater communication between empirical and modeling communities. 671 

As models begin to more faithfully reflect theoretical understanding of factors responsible for 672 

soil organic matter formation and decomposition we see the testbed as a tool to facilitate 673 

regional- to global-scale model comparison and evaluation, while developing understanding of 674 

soil biogeochemical processes. 675 
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Table 1 Comparison of key features distinguishing the soil models implemented in the 935 

biogeochemical testbed.  The list here is not intended to be exhaustive, see relevant publications 936 

and the online user’s manual and technical documentation for more information. 937 

 CASA-CNP MIMICS CORPSE 

Microbial 

Representation 

Implicit with first 

order kinetics. 

Explicit, with two 

microbial functional 

groups. 

Explicit, with one 

microbial pool in each 

litter and soil layer 

(including rhizosphere 

vs. bulk soils) 

Litter Carbon 

Pools  

2 + coarse woody 

debris 

2 3, assumed to be above 

the soil mineral 

surface 

Soil Carbon Pools  3 3 6, assumed to be in the 

mineral soil 
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Kinetics First order linear Reverse Michaelis-

Menten 

Reverse Michaelis-

Menten 

Temperature 

Function 

Exponential function 

of soil temperature 

Temperature 

dependent Vmax & K

Temperature 

dependent Ves max 

(Arrhenius function)  

Soil Moisture 

Function 

Bell-shaped curve with 

maximum at 55% total 

water saturation.  

None Bell-shaped curve with 

maximum at 55% 

liquid water saturation, 

greater moisture 

limitation at high and 

low soil moisture. 

Vertical 

resolution 

1 layer for 

biogeochemistry 

 

1 layer (0-100 cm) for 

biogeochemistry 

2 layers: mineral soil 

(0-100 cm) and litter 

layer 

Soil texture 

effects on SOC 

protection 

Finely textured soil 

increases transfer 

coefficients to passive 

pool. 

Clay content increases 

the allocation to, and 

slows the turnover of 

“physically protected” 

SOM.  

Clay content increases 

transfers from 

unprotected soil pools 

to their protected 

counterparts.  

Nutrients C, N, P, C-only 

version used here 

 

C-only model C-only model 

References Wang et al., 2010 Wieder et al., 2014; 

Wieder et al., 2015c 

Sulman et al., 2014 

 938 

Figure 1 – Configuration of the biogeochemical testbed. Inputs required by the testbed include 939 

daily estimates of gross primary productivity (GPP), air temperature, soil temperature, and soil 940 

moisture as well as static maps of soil properties and vegetation types. For the simulations 941 

presented here these were generated by simulations from the Community Land Model forced 942 

with CRU-NCEP climate reanalyzes for the period 1901-2010, but other input streams can be 943 

used in the testbed. From these inputs the CASA-CNP vegetation model calculates daily NPP 944 
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and litterfall fluxes, which are delivered to each of the soil biogeochemical models.  Output from 945 

the testbed include daily and annually averaged carbon stocks and fluxes for vegetation and soils.  946 

 947 

Figure 2 - Steady state soil carbon stocks (kg C m-2

 954 

) simulated in the biogeochemical testbed for 948 

(a) CASA-CNP, 1360 PgC; (b) MIMICS, 1420 Pg C; (c) CORPSE, 1410 Pg C; and (d) the 949 

HWSD observations, 1260 Pg C. All values represent the sum of litter, soil, and microbial 950 

biomass carbon that are averaged over the initialization period (1901-1920; 0-100 cm depth for 951 

MIMICS, CORPSE, and HWSD). Note, that MIMICS was previously calibrated against the 952 

HWSD and the quasi-logarithmic scale bar. 953 

Figure 3 - Zonal mean of steady state soil carbon stocks (kg C m-2

 959 

) calculated for each latitude 955 

band for CASA-CNP (green line), MIMICS (purple line) CORPSE (brown line), the HWSD 956 

observations (solid black line ± 1 σ, shaded area), and the NCSCD observations (dashed black 957 

line) Note irregular spacing on the x-axis.  958 

Figure 4 – Inferred soil carbon turnover times versus mean annual temperature for each grid cell 960 

in CASA-CNP, MIMICS, and CORPSE (a-c, respectively). Points are colored by mean annual 961 

soil moisture (percent saturation of liquid water), and binned according to the color bar below the 962 

figure.  Black lines show the observationally derived relationship between inferred turnover 963 

times and temperature ± 50% prediction interval (calculated by Koven et al., 2017). 964 

 965 

Figure 5 – Globally averaged changes in (a) environmental conditions: soil temperature (°C), 966 

soil moisture (% saturation), and plant litter inputs (red, blue and black lines, respectively); and 967 

the cumulative change (b) soil carbon stocks simulated by: CASA-CNP, MIMICS, and CORPSE 968 

(green, purple, and brown lines, respectively) in the full transient simulation.  Isolated forcing 969 

experiments showing changes in soil carbon stocks following changes in only (c) GPP, (d) soil 970 

temperature, and (e) soil moisture.  For all plots, annual values were weighted by land area and 971 

differenced from initial conditions averaged over the spin-up period.  972 

 973 
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Figure 6 – Spatial distribution of changes in soil carbon stocks (g C m-2

 977 

) simulated by the end of 974 

the historical period (mean of 2001-2010) in the biogeochemical testbed for (a) CASA-CNP 975 

(+18 Pg C), (b) MIMICS (+24 Pg C), and (c) CORPSE (-21 Pg C).  976 

Figure 7 – Hovmöller diagram showing the climatological mean daily respiration rate (g C m-2 978 

d-1

 983 

) averaged over each latitude band for the initialization period (1901-1920; left column), and 979 

the difference between the final (2001-2010) and initial (1901-1920) mean daily respiration rates 980 

(right column). Results from each model are shown for (a, b) CASA-CNP, (c, d) MIMICS, and 981 

(e, f) CORPSE.  982 

Figure 8 – Mean annual cycle of (a) soil temperature, soil moisture and litter inputs (red, blue, 984 

and black lines, respectively) at 54°N over the last decade of the simulation (2001-2010). The 985 

lower panel (b) shows heterotrophic respiration fluxes (solid lines) and microbial biomass stocks 986 

(dashed lines) from CASA-CNP, MIMICS, and CORPSE (green, purple, and brown lines, 987 

respectively) for the same region and time period. 988 
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